login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A219779
G.f.: 1 = Sum_{n>=0} a(n) * x^n * (1 - (n+1)*x)^3.
1
1, 3, 15, 100, 819, 7890, 86995, 1077150, 14767575, 221751010, 3615510375, 63552101550, 1197196399675, 24048396026850, 512872089970875, 11569027674987550, 275113466366738175, 6876716833964911650, 180206071050892236175, 4939209747546747991950, 141294422480371952482275
OFFSET
0,2
COMMENTS
Compare to: 1 = Sum_{n>=0} n! * x^n * (1 - (n+1)*x).
Compare to: 1 = Sum_{n>=0} A002720(n) * x^n * (1 - (n+1)*x)^2, where A002720(n) is the number of partial permutations of an n-set.
EXAMPLE
E.g.f.: A(x) = 1 + 3*x + 15*x^2/2! + 100*x^3/3! + 819*x^4/4! + 7890*x^5/5! +...
By definition, the terms satisfy:
1 = (1-x)^3 + 3*x*(1-2*x)^3 + 15*x^2*(1-3*x)^3 + 100*x^3*(1-4*x)^3 + 819*x^4*(1-5*x)^3 + 7890*x^5*(1-6*x)^3 + 86995*x^6*(1-7*x)^3 +...
PROG
(PARI) {a(n)=polcoeff(x-sum(m=1, n-1, a(m)*x^m*(1-m*x+x*O(x^n))^3), n)}
for(n=1, 25, print1(a(n), ", "))
CROSSREFS
Sequence in context: A135883 A372157 A147664 * A303651 A350954 A196962
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 27 2012
STATUS
approved