login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A357829
a(n) = Sum_{k=0..floor((n-1)/3)} |Stirling1(n,3*k+1)|.
2
0, 1, 1, 2, 7, 34, 205, 1456, 11837, 108150, 1096011, 12196128, 147814359, 1938062490, 27333191613, 412614191808, 6638401596645, 113398127795862, 2049808094564139, 39091473755006400, 784404343854767727, 16520634668922810426, 364400233756422553053
OFFSET
0,4
LINKS
Eric Weisstein's World of Mathematics, Pochhammer Symbol.
FORMULA
Let w = exp(2*Pi*i/3) and set F(x) = (exp(x) + w^2*exp(w*x) + w*exp(w^2*x))/3 = x + x^4/4! + x^7/7! + ... . Then the e.g.f. for the sequence is F(-log(1-x)).
a(n) = ( (1)_n + w^2 * (w)_n + w * (w^2)_n )/3, where (x)_n is the Pochhammer symbol.
PROG
(PARI) a(n) = sum(k=0, (n-1)\3, abs(stirling(n, 3*k+1, 1)));
(PARI) my(N=30, x='x+O('x^N)); concat(0, Vec(serlaplace(sum(k=0, N\3, (-log(1-x))^(3*k+1)/(3*k+1)!))))
(PARI) Pochhammer(x, n) = prod(k=0, n-1, x+k);
a(n) = my(w=(-1+sqrt(3)*I)/2); round(Pochhammer(1, n)+w^2*Pochhammer(w, n)+w*Pochhammer(w^2, n))/3;
CROSSREFS
Sequence in context: A145345 A212027 A056543 * A075834 A011800 A112916
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 14 2022
STATUS
approved