login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A357831
a(n) = Sum_{k=0..floor(n/3)} 2^k * |Stirling1(n,3*k)|.
4
1, 0, 0, 2, 12, 70, 454, 3332, 27552, 254400, 2598852, 29125932, 355455468, 4693396656, 66671326176, 1013916648840, 16436063079552, 282920894841096, 5153797995148296, 99052313167391760, 2003040751641857856, 42513854724369719136, 944959706480298199824
OFFSET
0,4
LINKS
Eric Weisstein's World of Mathematics, Pochhammer Symbol.
FORMULA
Let w = exp(2*Pi*i/3) and set F(x) = (exp(x) + exp(w*x) + exp(w^2*x))/3 = 1 + x^3/3! + x^6/6! + ... . Then the e.g.f. for the sequence is F(-2^(1/3) * log(1-x)).
a(n) = ( (2^(1/3))_n + (2^(1/3)*w)_n + (2^(1/3)*w^2)_n )/3, where (x)_n is the Pochhammer symbol.
PROG
(PARI) a(n) = sum(k=0, n\3, 2^k*abs(stirling(n, 3*k, 1)));
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N\3, 2^k*(-log(1-x))^(3*k)/(3*k)!)))
(PARI) Pochhammer(x, n) = prod(k=0, n-1, x+k);
a(n) = my(v=2^(1/3), w=(-1+sqrt(3)*I)/2); round(Pochhammer(v, n)+Pochhammer(v*w, n)+Pochhammer(v*w^2, n))/3;
CROSSREFS
Sequence in context: A059229 A001251 A143357 * A012426 A012421 A012381
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 14 2022
STATUS
approved