login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A357828
a(n) = Sum_{k=0..floor(n/3)} |Stirling1(n,3*k)|.
3
1, 0, 0, 1, 6, 35, 226, 1645, 13454, 122661, 1236018, 13656951, 164290182, 2138379243, 29949509226, 449188719525, 7183702249542, 122039922034485, 2194928052851898, 41666342509646127, 832547791827455886, 17466905709043534107, 383908421683657311714
OFFSET
0,5
LINKS
Eric Weisstein's World of Mathematics, Pochhammer Symbol.
FORMULA
Let w = exp(2*Pi*i/3) and set F(x) = (exp(x) + exp(w*x) + exp(w^2*x))/3 = 1 + x^3/3! + x^6/6! + ... . Then the e.g.f. for the sequence is F(-log(1-x)).
a(n) = ( (1)_n + (w)_n + (w^2)_n )/3, where (x)_n is the Pochhammer symbol.
PROG
(PARI) a(n) = sum(k=0, n\3, abs(stirling(n, 3*k, 1)));
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N\3, (-log(1-x))^(3*k)/(3*k)!)))
(PARI) Pochhammer(x, n) = prod(k=0, n-1, x+k);
a(n) = my(w=(-1+sqrt(3)*I)/2); round(Pochhammer(1, n)+Pochhammer(w, n)+Pochhammer(w^2, n))/3;
CROSSREFS
Cf. A003703.
Sequence in context: A081051 A145145 A367234 * A347002 A346945 A289383
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 14 2022
STATUS
approved