login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A347002
Expansion of e.g.f. exp( -log(1 - x)^3 / 3! ).
10
1, 0, 0, 1, 6, 35, 235, 1834, 16352, 163764, 1818030, 22143726, 293476326, 4203311892, 64682865156, 1064154324024, 18636296872320, 346103784493560, 6793394350116600, 140508244952179200, 3054120126193160280, 69596730438090806880, 1659041650323705102840
OFFSET
0,5
LINKS
FORMULA
a(0) = 1; a(n) = Sum_{k=1..n} binomial(n-1,k-1) * |Stirling1(k,3)| * a(n-k).
a(n) = Sum_{k=0..floor(n/3)} (3*k)! * |Stirling1(n,3*k)|/(6^k * k!). - Seiichi Manyama, May 06 2022
MATHEMATICA
nmax = 22; CoefficientList[Series[Exp[-Log[1 - x]^3/3!], {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k - 1] Abs[StirlingS1[k, 3]] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 22}]
PROG
(PARI) a(n) = sum(k=0, n\3, (3*k)!*abs(stirling(n, 3*k, 1))/(6^k*k!)); \\ Seiichi Manyama, May 06 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Aug 10 2021
STATUS
approved