login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

E.g.f. x^3/(1-x)^2.
8

%I #44 Sep 08 2022 08:44:59

%S 0,0,0,6,48,360,2880,25200,241920,2540160,29030400,359251200,

%T 4790016000,68497228800,1046139494400,16999766784000,292919058432000,

%U 5335311421440000,102437979291648000,2067966706950144000

%N E.g.f. x^3/(1-x)^2.

%C For n >= 3, a(n) = number whose factorial base representation (A007623) begins with digit {n-2} followed by n-1 zeros. Viewed in that base, this sequence looks like this: 0, 0, 0, 100, 2000, 30000, 400000, 5000000, 60000000, 700000000, 8000000000, 90000000000, A00000000000, B000000000000, ... (where "digits" A and B stand for placeholder values 10 and 11 respectively). - _Antti Karttunen_, May 07 2015

%H Vincenzo Librandi, <a href="/A052571/b052571.txt">Table of n, a(n) for n = 0..300</a>

%H Milan Janjic, <a href="http://www.pmfbl.org/janjic/">Enumerative Formulas for Some Functions on Finite Sets</a>.

%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=514">Encyclopedia of Combinatorial Structures 514</a>.

%H Luis Manuel Rivera, <a href="http://arxiv.org/abs/1406.3081">Integer sequences and k-commuting permutations</a>, arXiv preprint, arXiv:1406.3081 [math.CO], 2014-2015.

%H <a href="/index/Fa#facbase">Index entries for sequences related to factorial base representation</a>

%F E.g.f.: x^3/(-1+x)^2.

%F Recurrence: {a(1)=0, a(0)=0, a(2)=0, a(3)=6, (1-n^2)*a(n)+(-2+n)*a(n+1)=0}.

%F For n >= 2, a(n) = (n-2)*n!.

%F a(n+2) = n*(n+1)*(n+2)*n!. - _Zerinvary Lajos_, Nov 25 2006

%F a(n) = 3*A090672(n-2) = 6*A005990(n-2). - _Zerinvary Lajos_, May 11 2007

%F From _Amiram Eldar_, Jan 14 2021: (Start)

%F Sum_{n>=3} 1/a(n) = 9/4 - e - gamma/2 + Ei(1)/2 = 9/4 - A001113 - (1/2)*A001620 + (1/2)*A091725.

%F Sum_{n>=3} (-1)^(n+1)/a(n) = -1/4 + gamma/2 - Ei(-1)/2 = -1/4 + (1/2)*A001620 + (1/2)*A099285. (End)

%p spec := [S,{S=Prod(Z,Z,Z,Sequence(Z),Sequence(Z))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);

%p [seq (n*(n+1)*(n+2)*n!,n=0..17)]; # _Zerinvary Lajos_, Nov 25 2006

%p a:=n->add((n!),j=1..n-2):seq(a(n), n=0..21); # _Zerinvary Lajos_, Aug 27 2008

%p G(x):=x^3/(1-x)^2: f[0]:=G(x): for n from 1 to 21 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..19); # _Zerinvary Lajos_, Apr 01 2009

%t Table[Sum[n!, {i, 3, n}], {n, 0, 19}] (* _Zerinvary Lajos_, Jul 12 2009 *)

%o (Magma) [0,0],[n*(n+1)*(n+2)*Factorial(n): n in [0..20]]; // _Vincenzo Librandi_, Oct 11 2011

%o (Scheme) (define (A052571 n) (if (< n 2) 0 (* (- n 2) (A000142 n)))) ;; _Antti Karttunen_, May 07 2015

%Y Column 5 of A257503 (apart from zero terms. Equally, row 5 of A257505).

%Y Cf. A000142, A007623, A005990, A090672.

%Y Cf. sequences with formula (n + k)*n! listed in A282466.

%Y Cf. A001113, A001620, A091725, A099285.

%K easy,nonn

%O 0,4

%A encyclopedia(AT)pommard.inria.fr, Jan 25 2000