login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A324074
Total number of distorted ancestor-successor pairs in all defective (binary) heaps on n elements.
2
0, 0, 1, 6, 48, 360, 2880, 25200, 262080, 2903040, 34473600, 439084800, 5987520000, 87178291200, 1351263513600, 22230464256000, 397533007872000, 7469435990016000, 147254595231744000, 3041127510220800000, 65688354220769280000, 1481637322979573760000
OFFSET
0,4
LINKS
Eric Weisstein's World of Mathematics, Heap
Wikipedia, Binary heap
FORMULA
a(n) = Sum_{k=0..A061168(n)} k * A306393(n,k).
MAPLE
b:= proc(u, o) option remember; local n, g, l; n:= u+o;
if n=0 then 1
else g:= 2^ilog2(n); l:= min(g-1, n-g/2); expand(
add(x^(n-j)*add(binomial(j-1, i)*binomial(n-j, l-i)*
b(i, l-i)*b(j-1-i, n-l-j+i), i=0..min(j-1, l)), j=1..u)+
add(x^(j-1)*add(binomial(j-1, i)*binomial(n-j, l-i)*
b(l-i, i)*b(n-l-j+i, j-1-i), i=0..min(j-1, l)), j=1..o))
fi
end:
a:= n-> (p-> add(coeff(p, x, i)*i, i=0..degree(p)))(b(n, 0)):
seq(a(n), n=0..25);
MATHEMATICA
b[u_, o_] := b[u, o] = Module[{n, g, l}, n = u + o; If[n == 0, 1,
g = 2^(Length[IntegerDigits[n, 2]]-1); l = Min[g-1, n-g/2]; Expand[
Sum[x^(n - j)*Sum[Binomial[j - 1, i]*Binomial[n - j, l - i]*
b[i, l-i]*b[j-1-i, n-l-j+i], {i, 0, Min[j - 1, l]}], {j, 1, u}] +
Sum[x^(j - 1)*Sum[Binomial[j - 1, i]*Binomial[n - j, l - i]*
b[l-i, i]*b[n-l-j+i, j-1-i], {i, 0, Min[j - 1, l]}], {j, 1, o}]]]];
a[n_] := With[{p=b[n, 0]}, CoefficientList[p, x].Range[0, Exponent[p, x]]];
a /@ Range[0, 25] (* Jean-François Alcover, Apr 23 2021, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Feb 14 2019
STATUS
approved