login
A324077
One of the four successive approximations up to 13^n for 13-adic integer 3^(1/4).This is the 2 (mod 13) case (except for n = 0).
13
0, 2, 28, 1211, 3408, 346140, 2573898, 60495606, 311489674, 6837335442, 70464331680, 208322823529, 18129926763899, 111322267253823, 1928572906807341, 29490207606702364, 438977351719428420, 7093143443551226830, 15743559362932564763, 1365208442786421282311
OFFSET
0,2
COMMENTS
For n > 0, a(n) is the unique number k in [1, 13^n] and congruent to 2 mod 13 such that k^4 - 3 is divisible by 13^n.
For k not divisible by 13, k is a fourth power in 13-adic field if and only if k == 1, 3, 9 (mod 13). If k is a fourth power in 13-adic field, then k has exactly 4 fourth-power roots.
FORMULA
a(n) = A324082(n)*A286840(n) mod 13^n = A324083(n)*A286841(n) mod 13^n.
For n > 0, a(n) = 13^n - A324084(n).
a(n)^2 == A322085(n) (mod 13^n).
EXAMPLE
The unique number k in [1, 13^2] and congruent to 2 modulo 13 such that k^4 - 3 is divisible by 13^2 is k = 28, so a(2) = 28.
The unique number k in [1, 13^3] and congruent to 2 modulo 13 such that k^4 - 3 is divisible by 13^3 is k = 1211, so a(3) = 1211.
PROG
(PARI) a(n) = lift(sqrtn(3+O(13^n), 4) * sqrt(-1+O(13^n)))
KEYWORD
nonn
AUTHOR
Jianing Song, Sep 01 2019
STATUS
approved