login
A324072
For any composite number k take the polynomial defined by the product of the terms (x-d_i), where d_i are the aliquot parts of k. Integrate this polynomial from the minimum to the maximum value of d_i. Sequence lists the numbers k for which the integral is a positive integer.
1
35, 143, 209, 247, 323, 527, 589, 713, 851, 899, 989, 1073, 1147, 1247, 1333, 1591, 1763, 2257, 2479, 2501, 2623, 2747, 2867, 2881, 2993, 3139, 3149, 3233, 3239, 3397, 3431, 3551, 3599, 3713, 3869, 3953, 4087, 4187, 4307, 4453, 4661, 4693, 4819, 4891, 5141, 5183
OFFSET
1,1
COMMENTS
Composites with an integral equal to zero are listed in A129521.
Similar to A203612 where prime factors are taken into account.
EXAMPLE
Aliquot parts of 35 are 1, 5, 7. Polynomial: (x-1)*(x-5)*(x-7) = x^3 - 13*x^2 + 47*x - 35. Integral: x^4/4 - (13/3)*x^3 + (47/2)*x^2 - 35*x. The area from x=1 to x=7 is 36.
MAPLE
with(numtheory): P:=proc(n) local a, k, x, y;
a:=sort([op(divisors(n) minus {n})]);
y:=int(mul((x-k), k=a), x=1..a[nops(a)]);
if frac(y)=0 and y>0 then n; fi; end: seq(P(i), i=2..5183);
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paolo P. Lava, Feb 14 2019
STATUS
approved