login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A182612 Number of conjugacy classes in GL(n,27). 18
1, 26, 728, 19656, 531414, 14348152, 387419760, 10460332792, 282429516096, 7625596933890, 205891131543552, 5559060551656248, 150094635282119528, 4052555152616676888, 109418989131110078784, 2954312706539971597184, 79766443076861647780830 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..250

FORMULA

G.f.: Product_{k>=1} (1-x^k)/(1-27*x^k). - Alois P. Heinz, Nov 03 2012

MAPLE

with(numtheory):

b:= proc(n) b(n):= add(phi(d)*27^(n/d), d=divisors(n))/n-1 end:

a:= proc(n) a(n):= `if`(n=0, 1,

add(add(d*b(d), d=divisors(j)) *a(n-j), j=1..n)/n)

end:

seq(a(n), n=0..20); # Alois P. Heinz, Nov 03 2012

MATHEMATICA

b[n_] := Sum[EulerPhi[d]*27^(n/d), {d, Divisors[n]}]/n-1; a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*b[d], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Feb 17 2014, after Alois P. Heinz *)

PROG

(Magma) /* The program does not work for n>4: */ [1] cat [ NumberOfClasses(GL(n, 27)) : n in [1..4] ];

(PARI)

N=66; x='x+O('x^N);

gf=prod(n=1, N, (1-x^n)/(1-27*x^n) );

v=Vec(gf)

/* Joerg Arndt, Jan 24 2013 */

CROSSREFS

Cf. A006951, A006952, A049314, A049315, A049316, A182603, A182604, A182605, A182606, A182607, A182608, A182609, A182610, A182611.

Sequence in context: A158643 A181227 A094738 * A143900 A282790 A180792

Adjacent sequences: A182609 A182610 A182611 * A182613 A182614 A182615

KEYWORD

nonn

AUTHOR

Klaus Brockhaus, Nov 23 2010

EXTENSIONS

More terms from Alois P. Heinz, Nov 03 2012

MAGMA code edited by Vincenzo Librandi, Jan 24 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 22 01:15 EDT 2023. Contains 361413 sequences. (Running on oeis4.)