This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A292041 a(n) = floor(c^n) where c = (2^(1/3)-1)^(-2) = 14.801887...(n > 0). 1
 14, 219, 3243, 48002, 710534, 10517258, 155675283, 2304288003, 34107811455, 504859983098, 7472880600122, 110612736864003, 1637277271142775, 24234793737149739, 358720686980681762, 5309743200769920002, 78594220744343904494, 1163342802249829489179 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS All the numbers in this sequence are composites. The sequence was discovered by M. N. Huxley and published in the paper by Baker and Harman. Each term == 2 or 3 (mod 6). - Robert Israel, Sep 08 2017 LINKS Robert Israel, Table of n, a(n) for n = 1..853 Roger C. Baker and Glyn Harman, Primes of the form [c^p], Mathematische Zeitschrift, Vol. 221, No. 1 (1996), pp. 73-81. Eric Weisstein's World of Mathematics, Primefree Sequence. MAPLE Digits:= 1000: c:=  (2^(1/3)-1)^(-2): seq(floor(c^n), n=1..50); # Robert Israel, Sep 08 2017 MATHEMATICA c = (2^(1/3) - 1)^(-2); Table[Floor[c^n], {n, 1, 10}] PROG (PARI) a(n) = floor(1/(2^(1/3)-1)^(2*n)); \\ Altug Alkan, Sep 08 2017 CROSSREFS Sequence in context: A240781 A113894 A225315 * A319114 A145269 A221582 Adjacent sequences:  A292038 A292039 A292040 * A292042 A292043 A292044 KEYWORD nonn AUTHOR Amiram Eldar, Sep 08 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 19 03:24 EDT 2019. Contains 328211 sequences. (Running on oeis4.)