login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A292041 a(n) = floor(c^n) where c = (2^(1/3)-1)^(-2) = 14.801887...(n > 0). 1
14, 219, 3243, 48002, 710534, 10517258, 155675283, 2304288003, 34107811455, 504859983098, 7472880600122, 110612736864003, 1637277271142775, 24234793737149739, 358720686980681762, 5309743200769920002, 78594220744343904494, 1163342802249829489179 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

All the numbers in this sequence are composites. The sequence was discovered by M. N. Huxley and published in the paper by Baker and Harman.

Each term == 2 or 3 (mod 6). - Robert Israel, Sep 08 2017

LINKS

Robert Israel, Table of n, a(n) for n = 1..853

Roger C. Baker and Glyn Harman, Primes of the form [c^p], Mathematische Zeitschrift, Vol. 221, No. 1 (1996), pp. 73-81.

Eric Weisstein's World of Mathematics, Primefree Sequence.

MAPLE

Digits:= 1000:

c:=  (2^(1/3)-1)^(-2):

seq(floor(c^n), n=1..50); # Robert Israel, Sep 08 2017

MATHEMATICA

c = (2^(1/3) - 1)^(-2); Table[Floor[c^n], {n, 1, 10}]

PROG

(PARI) a(n) = floor(1/(2^(1/3)-1)^(2*n)); \\ Altug Alkan, Sep 08 2017

CROSSREFS

Sequence in context: A240781 A113894 A225315 * A319114 A145269 A221582

Adjacent sequences:  A292038 A292039 A292040 * A292042 A292043 A292044

KEYWORD

nonn

AUTHOR

Amiram Eldar, Sep 08 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 19 03:24 EDT 2019. Contains 328211 sequences. (Running on oeis4.)