login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A292038
Expansion of Product_{k>=1} ((1 + x^(2*k-1)) / (1 - x^(2*k-1)))^(2*k-1).
4
1, 2, 2, 8, 14, 24, 52, 84, 158, 274, 464, 800, 1316, 2208, 3576, 5832, 9358, 14876, 23614, 36936, 57752, 89336, 137716, 210844, 321148, 486890, 733912, 1102336, 1646736, 2451464, 3632832, 5363988, 7889710, 11562712, 16888748, 24581904, 35670242, 51591096
OFFSET
0,2
COMMENTS
Convolution of A262736 and A262811.
LINKS
FORMULA
a(n) ~ exp(3*(7*Zeta(3))^(1/3)*n^(2/3) / 2^(5/3) - 1/12) * A * (7*Zeta(3))^(5/36) / (2^(31/36) * sqrt(3*Pi) * n^(23/36)), where A is the Glaisher-Kinkelin constant A074962.
G.f.: exp(2*Sum_{k>=1} sigma_2(2*k - 1)*x^(2*k-1)/(2*k - 1)). - Ilya Gutkovskiy, Apr 19 2019
MATHEMATICA
nmax = 50; CoefficientList[Series[Product[((1+x^(2*k-1))/(1-x^(2*k-1)))^(2*k-1), {k, 1, nmax}], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Sep 08 2017
STATUS
approved