login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A094941
a(n) is n! times the coefficient of Pi^floor(n/2) in the volume of an n-dimensional unit ball.
1
1, 2, 2, 8, 12, 64, 120, 768, 1680, 12288, 30240, 245760, 665280, 5898240, 17297280, 165150720, 518918400, 5284823040, 17643225600, 190253629440, 670442572800, 7610145177600, 28158588057600, 334846387814400, 1295295050649600
OFFSET
0,2
LINKS
L. Badger, Generating the Measures of n-Balls, Amer. Math. Monthly, 107 (2000), pp. 256-258.
Wikipedia, n-Sphere.
FORMULA
E.g.f.: exp(-x^2)*(1 + 2*Integral_{t=0..x} exp(-t^2) dt).
E.g.f. A(x) satisfies A'(x) = 2+2*x*A(x), A(0)=1.
a(n) = (2*n - 2) * a(n-2), if n>1.
a(n) * a(n+1) = n! * 2^(n+1).
a(n) = Pi^floor((n+1)/2)*Integral_{x>=0} (x^n*exp(-Pi*x^2/4)). - Paul Barry, Mar 01 2011
a(n+1) = 2*n*a(n-1); a(2n) = (2n)!/n! = A001813(n); a(2n+1) = 2^(2n+1)*n! = 2*A047053(n) = A098560(n) for n>0. - Henry Bottomley, Jun 03 2011
0 = a(n)*(2*a(n+1) - a(n+3)) + a(n+1)*a(n+2) if n>=0. - Michael Somos, Jan 24 2014; corrected by Georg Fischer, Jun 02 2021
EXAMPLE
The volume of a sphere is (4/3)*Pi*r^3 so a(3) = 3!*4/3 = 8.
G.f. = 1 + 2*x + 2*x^2 + 8*x^3 + 12*x^4 + 64*x^5 + 120*x^6 + 768*x^7 + ...
MATHEMATICA
Join[{1}, Table[If[OddQ[n], 2^n ((n - 1)/2)!, 2(n - 1)!/((n/2 - 1)!)], {n, 1, 25}]] (* Robert A. Russell, May 07 2006 *)
a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ Exp[x^2] (1 + Sqrt[Pi] Erf[x]), {x, 0, n}]] (* Michael Somos, Jan 24 2014 *)
a[ n_] := If[ n < 1, Boole[n == 0], If[ OddQ[n], 2^n ((n - 1)/2)!, 2 (n - 1)! / ((n/2 - 1)!)]] (* Michael Somos, Jan 24 2014 *)
PROG
(PARI) {a(n) = local(A); if( n<0, 0, A = exp(x^2 + x * O(x^n)); n! * polcoeff( A * (1 + 2*intformal( 1/A)), n))}
CROSSREFS
Cf. A087299.
Sequence in context: A026537 A089248 A006663 * A002785 A301603 A292038
KEYWORD
nonn
AUTHOR
Michael Somos, May 24 2004
STATUS
approved