login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A094938
a(n)=(-36^n/18)*B(2n,1/6)/B(2n,1/3) where B(n,x) is the n-th Bernoulli polynomial.
0
1, 63, 2511, 92583, 3352671, 120873303, 4353033231, 156723545223, 5642176768191, 203119525916343, 7312313393341551, 263243376303474663, 9476762394213697311, 341163453817290588183, 12281884406052838539471
OFFSET
1,2
FORMULA
a(n)=9^n/18*(4^n-2)
a(n)=9^(n-1)/2*(2^(2n)-2) - Harvey P. Dale, Mar 09 2018
G.f.: x*(1+18*x) / ( (36*x-1)*(9*x-1) ). - R. J. Mathar, Nov 15 2019
MATHEMATICA
LinearRecurrence[{45, -324}, {1, 63}, 20] (* Harvey P. Dale, Mar 09 2018 *)
PROG
(PARI) B(n, x)=sum(i=0, n, binomial(n, i)*bernfrac(i)*x^(n-i)); a(n)=(-36^n/18)*B(n, 1/6)/B(n, 1/3)
CROSSREFS
Cf. A096054.
Sequence in context: A143401 A075516 A004376 * A006110 A132051 A167987
KEYWORD
nonn,easy
AUTHOR
Benoit Cloitre, Jun 19 2004
EXTENSIONS
Incorrect recurrence formula deleted by Harvey P. Dale, Mar 09 2018
STATUS
approved