|
|
A094937
|
|
Number of real roots of the n-th Bernoulli polynomial B(n,x).
|
|
0
|
|
|
0, 1, 2, 3, 4, 5, 2, 3, 4, 5, 6, 7, 4, 5, 6, 7, 8, 5, 6, 7, 8, 9, 6, 7, 8, 9, 10, 7, 8, 9, 10, 11, 12, 9, 10, 11, 12, 13, 10, 11, 12, 13, 14, 11, 12, 13, 14, 15, 12, 13, 14, 15, 16, 17, 14, 15, 16, 17, 18, 15, 16
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
REFERENCES
|
R. Edwards and D. J. Leeming, The exact number of real roots of the Bernoulli polynomial, Journal of Approximation Theory 164:5 (2012), pp. 754-775.
A. P. Veselov and J. P. Ward, On the real zeros of the Hurwitz zeta-function and Bernoulli polynomials. J. Math. Anal. Appl. 305 (2005), no. 2, 712-721.
|
|
LINKS
|
Table of n, a(n) for n=0..60.
A. P. Veselov and J. P. Ward, On the real roots of the Bernoulli polynomials and the Hurwitz zeta-function, 1999 preprint.
|
|
FORMULA
|
a(n) = 2n/(Pi*e) + O(log n).
|
|
MATHEMATICA
|
a[n_] := CountRoots[ BernoulliB[n, x], x]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Sep 13 2012 *)
|
|
PROG
|
(PARI) a(n)=polsturm(sum(i=0, n, binomial(n, i)*bernfrac(i)*x^(n-i)))
(PARI) a(n)=my(e=1e-29, v=polroots(bernpol(n))); sum(i=1, #v, abs(imag(v[i])) <= abs(v[i])*e) \\ Charles R Greathouse IV, Nov 07 2012
|
|
CROSSREFS
|
Sequence in context: A328943 A173525 A070772 * A215089 A329243 A161768
Adjacent sequences: A094934 A094935 A094936 * A094938 A094939 A094940
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Benoit Cloitre, Jun 19 2004
|
|
STATUS
|
approved
|
|
|
|