The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A094937 Number of real roots of the n-th Bernoulli polynomial B(n,x). 0
 0, 1, 2, 3, 4, 5, 2, 3, 4, 5, 6, 7, 4, 5, 6, 7, 8, 5, 6, 7, 8, 9, 6, 7, 8, 9, 10, 7, 8, 9, 10, 11, 12, 9, 10, 11, 12, 13, 10, 11, 12, 13, 14, 11, 12, 13, 14, 15, 12, 13, 14, 15, 16, 17, 14, 15, 16, 17, 18, 15, 16 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 REFERENCES R. Edwards and D. J. Leeming, The exact number of real roots of the Bernoulli polynomial, Journal of Approximation Theory 164:5 (2012), pp. 754-775. A. P. Veselov and J. P. Ward, On the real zeros of the Hurwitz zeta-function and Bernoulli polynomials. J. Math. Anal. Appl. 305 (2005), no. 2, 712-721. LINKS A. P. Veselov and J. P. Ward, On the real roots of the Bernoulli polynomials and the Hurwitz zeta-function, 1999 preprint. FORMULA a(n) = 2n/(Pi*e) + O(log n). MATHEMATICA a[n_] := CountRoots[ BernoulliB[n, x], x]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Sep 13 2012 *) PROG (PARI) a(n)=polsturm(sum(i=0, n, binomial(n, i)*bernfrac(i)*x^(n-i))) (PARI) a(n)=my(e=1e-29, v=polroots(bernpol(n))); sum(i=1, #v, abs(imag(v[i])) <= abs(v[i])*e) \\ Charles R Greathouse IV, Nov 07 2012 CROSSREFS Sequence in context: A328943 A173525 A070772 * A215089 A329243 A161768 Adjacent sequences:  A094934 A094935 A094936 * A094938 A094939 A094940 KEYWORD nonn AUTHOR Benoit Cloitre, Jun 19 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 16 22:37 EDT 2022. Contains 353724 sequences. (Running on oeis4.)