login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A143401
Expansion of x^k/Product_{t=k..2k} (1-tx) for k=6.
2
0, 0, 0, 0, 0, 0, 1, 63, 2282, 62370, 1428987, 28979181, 537306484, 9302333040, 152587968533, 2396472657579, 36320866824606, 534421447961310, 7670116319449039, 107781064078390857, 1487396442778796648, 20208696810429799980, 270879169288278532905
OFFSET
0,8
COMMENTS
a(n) is also the number of forests of 6 labeled rooted trees of height at most 1 with n labels, where any root may contain >= 1 labels.
FORMULA
G.f.: x^6/((1-6x)(1-7x)(1-8x)(1-9x)(1-10x)(1-11x)(1-12x)).
E.g.f.: exp(6*x)*((exp(x)-1)^6)/6!.
MAPLE
a:= proc(k::nonnegint) local M; M:= Matrix(k+1, (i, j)-> if (i=j-1) then 1 elif j=1 then [seq(-1* coeff(product(1-t*x, t=k..2*k), x, u), u=1..k+1)][i] else 0 fi); p-> (M^p)[1, k+1] end(6); seq(a(n), n=0..27);
CROSSREFS
6th column of A143395.
Sequence in context: A240421 A170932 A173191 * A075516 A004376 A094938
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 12 2008
STATUS
approved