login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of x^k/Product_{t=k..2k} (1-tx) for k=6.
2

%I #14 May 14 2016 14:50:38

%S 0,0,0,0,0,0,1,63,2282,62370,1428987,28979181,537306484,9302333040,

%T 152587968533,2396472657579,36320866824606,534421447961310,

%U 7670116319449039,107781064078390857,1487396442778796648,20208696810429799980,270879169288278532905

%N Expansion of x^k/Product_{t=k..2k} (1-tx) for k=6.

%C a(n) is also the number of forests of 6 labeled rooted trees of height at most 1 with n labels, where any root may contain >= 1 labels.

%H Alois P. Heinz, <a href="/A143401/b143401.txt">Table of n, a(n) for n = 0..300</a>

%H <a href="/index/Ro#rooted">Index entries for sequences related to rooted trees</a>

%F G.f.: x^6/((1-6x)(1-7x)(1-8x)(1-9x)(1-10x)(1-11x)(1-12x)).

%F E.g.f.: exp(6*x)*((exp(x)-1)^6)/6!.

%p a:= proc(k::nonnegint) local M; M:= Matrix(k+1, (i,j)-> if (i=j-1) then 1 elif j=1 then [seq(-1* coeff(product(1-t*x, t=k..2*k), x,u), u=1..k+1)][i] else 0 fi); p-> (M^p)[1,k+1] end(6); seq(a(n), n=0..27);

%Y 6th column of A143395.

%K nonn

%O 0,8

%A _Alois P. Heinz_, Aug 12 2008