Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Apr 19 2019 11:17:43
%S 1,2,2,8,14,24,52,84,158,274,464,800,1316,2208,3576,5832,9358,14876,
%T 23614,36936,57752,89336,137716,210844,321148,486890,733912,1102336,
%U 1646736,2451464,3632832,5363988,7889710,11562712,16888748,24581904,35670242,51591096
%N Expansion of Product_{k>=1} ((1 + x^(2*k-1)) / (1 - x^(2*k-1)))^(2*k-1).
%C Convolution of A262736 and A262811.
%H Vaclav Kotesovec, <a href="/A292038/b292038.txt">Table of n, a(n) for n = 0..10000</a>
%F a(n) ~ exp(3*(7*Zeta(3))^(1/3)*n^(2/3) / 2^(5/3) - 1/12) * A * (7*Zeta(3))^(5/36) / (2^(31/36) * sqrt(3*Pi) * n^(23/36)), where A is the Glaisher-Kinkelin constant A074962.
%F G.f.: exp(2*Sum_{k>=1} sigma_2(2*k - 1)*x^(2*k-1)/(2*k - 1)). - _Ilya Gutkovskiy_, Apr 19 2019
%t nmax = 50; CoefficientList[Series[Product[((1+x^(2*k-1))/(1-x^(2*k-1)))^(2*k-1), {k, 1, nmax}], {x, 0, nmax}], x]
%Y Cf. A080054, A262736, A262811, A284628, A285069, A292038.
%K nonn
%O 0,2
%A _Vaclav Kotesovec_, Sep 08 2017