OFFSET
1,4
COMMENTS
Let S(n) = list of forbidden primes for A354790(n); A356803(n) is the product of these primes. Then a(n) = Sum of 2^(i-1) over all prime(i) in S(n).
Conversely, if a(n) has binary expansion a(n) = Sum b(i)*2^i, b(i) = 0 or 1, then S(n) consists of {prime(i+1) such that b(i) = 1}. (After comment by N. J. A. Sloane at A354765)
Analogous to A354765.
LINKS
Michael De Vlieger, Table of n, a(n) for n = 1..3405
EXAMPLE
For n = 7 the forbidden primes are 5, 7, 11 = prime(3), prime(4) and prime(5). Their product is A356803(7) = 385. Then a(7) = 2^2 + 2^3 + 2^4 = 28.
MATHEMATICA
Block[{s = Import["https://oeis.org/A354790/a354790.txt", "Data"][[1 ;; 25, -1]], m = 0}, Join[{0, 0}, Reap[Do[If[i > 1, m += Total[2^PrimePi@ FactorInteger[s[[i - 1]]][[All, 1]]]]; If[IntegerQ[#] && # > 0, m -= Total[2^PrimePi@ FactorInteger[s[[#]]][[All, 1]]]] &[(i - 1)/2]; Sow[m], {i, Length[s]}] ][[-1, -1, 3 ;; -1]]/2] ]
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Michael De Vlieger, Sep 06 2022
STATUS
approved