login
A356804
a(n) is a binary encoded version of A356803(n).
1
0, 0, 1, 3, 6, 14, 28, 31, 59, 123, 243, 499, 995, 2019, 2028, 2045, 4061, 4095, 8127, 16319, 32575, 65343, 130623, 261695, 523327, 1047615, 2095167, 4192319, 8386611, 8386679, 16775270, 16775279, 33550447, 67104879, 134213709, 134213727, 268427359, 536862815
OFFSET
1,4
COMMENTS
Let S(n) = list of forbidden primes for A354790(n); A356803(n) is the product of these primes. Then a(n) = Sum of 2^(i-1) over all prime(i) in S(n).
Conversely, if a(n) has binary expansion a(n) = Sum b(i)*2^i, b(i) = 0 or 1, then S(n) consists of {prime(i+1) such that b(i) = 1}. (After comment by N. J. A. Sloane at A354765)
Analogous to A354765.
LINKS
EXAMPLE
For n = 7 the forbidden primes are 5, 7, 11 = prime(3), prime(4) and prime(5). Their product is A356803(7) = 385. Then a(7) = 2^2 + 2^3 + 2^4 = 28.
MATHEMATICA
Block[{s = Import["https://oeis.org/A354790/a354790.txt", "Data"][[1 ;; 25, -1]], m = 0}, Join[{0, 0}, Reap[Do[If[i > 1, m += Total[2^PrimePi@ FactorInteger[s[[i - 1]]][[All, 1]]]]; If[IntegerQ[#] && # > 0, m -= Total[2^PrimePi@ FactorInteger[s[[#]]][[All, 1]]]] &[(i - 1)/2]; Sow[m], {i, Length[s]}] ][[-1, -1, 3 ;; -1]]/2] ]
CROSSREFS
Sequence in context: A001970 A006951 A224840 * A345334 A354294 A132891
KEYWORD
nonn,base
AUTHOR
Michael De Vlieger, Sep 06 2022
STATUS
approved