login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A354790
a(n) is the least positive squarefree number not already used that is coprime to the previous floor(n/2) terms.
10
1, 2, 3, 5, 7, 11, 6, 13, 17, 19, 23, 29, 31, 35, 22, 37, 39, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 85, 89, 14, 97, 101, 103, 33, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 65, 233
OFFSET
1,2
COMMENTS
A version of the Two-Up sequence A090252 that is restricted to squarefree numbers.
LINKS
Thomas Scheuerle, Comments on A354790 regarding the possibility of composites with more than two factors.
Rémy Sigrist, C program (inspired by Russ Cox's Go program for A247665)
Michael De Vlieger, Compact annotated plot of prime p | A354790(n) at (n, pi(p)) for composite A354790(n), n <= 1500. Color function indicates the number k > 1 of appearances of divisor p in the sequence. Diagram supports a proposition similar to Conjecture 3 in A090252 but regarding this sequence. Indices n connected in red appear in A355897.
Michael De Vlieger, Comprehensive annotated plot of prime p | A354790(n) at (n, pi(p)) for composite A354790(n), n <= 10^5. Color function indicates the number k > 1 of appearances of divisor p in the sequence.
MAPLE
# A354790 = Squarefree version of the Two-Up sequence A090252
# This produces 2*M terms in the array a
# Assumes b117 is a list of sufficiently many squarefree numbers A005117
# Test if u is relatively prime to all of a[i], i = i1..i2
perpq:=proc(u, i1, i2) local i; global a;
for i from i1 to i2 do if igcd(u, a[i])>1 then return(-1); fi; od: 1; end;
a:=Array(1..10000, -1);
hit:=Array(1..10000, -1); # 1 if i has appeared
a[1]:=1; a[2]:=2; hit[1]:=1; hit[2]:=1;
M:=100; M1 := 1000;
for p from 2 to M do
# step 1 want a[2p-1] relatively prime to a[p] ... a[2p-2]
sw1:=-1;
for j from 1 to M1 do
c:=b117[j];
if hit[c] = -1 and perpq(c, p, 2*p-2) = 1 then a[2*p-1]:=c; hit[c]:=1; sw1:=1; break; fi;
od: # od j
if sw1 = -1 then error("no luck, step 1, p =", p ); fi;
# step 2 want a[2p] relatively prime to a[p] ... a[2p-1]
sw2:=-1;
for j from 1 to M1 do
c:=b117[j];
if hit[c] = -1 and perpq(c, p, 2*p-1) = 1 then a[2*p]:=c; hit[c]:=1; sw2:=1; break; fi;
od: # od j
if sw2 = -1 then error("no luck, step 2, p =", p ); fi;
od: # od p
[seq(a[i], i=1..2*M)];
MATHEMATICA
nn = 60; pp[_] = 1; k = r = 1; c[_] = False; a[1] = 1; Do[Set[m, SelectFirst[Union@ Append[Times @@ # & /@ Subsets[#, {2, Infinity}], Prime[r]] &[Prime@ Select[Range[If[k == 1, r, k + 1]], p[Prime[#]] < n &]], ! c[#] &]]; Set[a[n], m]; (c[m] = True; If[PrimeQ[m], r++]; If[n > 1, Map[(Set[p[#], 2 n]; pp[#]++) &, #]]) &@ FactorInteger[m][[All, 1]]; While[pp[Prime[k]] > 2, k++], {n, 2, nn}]; Array[a, nn] (* Michael De Vlieger, Sep 06 2022 *)
PROG
(PARI) \\ See Links section.
(Python)
from math import lcm, gcd
from itertools import count, islice
from collections import deque
from sympy import factorint
def A354790_gen(): # generator of terms
aset, aqueue, c, b, f = {1}, deque([1]), 2, 1, True
yield 1
while True:
for m in count(c):
if m not in aset and gcd(m, b) == 1 and all(map(lambda n:n<=1, factorint(m).values())):
yield m
aset.add(m)
aqueue.append(m)
if f: aqueue.popleft()
b = lcm(*aqueue)
f = not f
while c in aset:
c += 1
break
A354790_list = list(islice(A354790_gen(), 30)) # Chai Wah Wu, Jul 17 2022
(C) // See Links section.
CROSSREFS
See A354791 and A354792 for the nonprime terms.
See A355895 for the even terms.
Sequence in context: A087174 A071963 A224075 * A053724 A046220 A141792
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Rémy Sigrist, Jul 17 2022
STATUS
approved