login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A sum over partitions (q=18), see first comment.
9

%I #17 Feb 24 2022 08:45:12

%S 1,17,323,5814,104958,1889227,34011900,612213877,11019954438,

%T 198359179578,3570467115834,64268408079198,1156831379431973,

%U 20822964829665048,374813367546080412,6746640615829343087,121439531095946141922,2185911559727028566514

%N A sum over partitions (q=18), see first comment.

%C Set q=18 and f(m)=q^(m-1)*(q-1), then a(n) is the sum over all partitions P of n over all products Product_{k=1..L} f(m_k) where L is the number of different parts in the partition P=[p_1^m_1, p_2^m_2, ..., p_L^m_L].

%C Setting q to a prime power gives the sequence "Number of conjugacy classes in GL(n,q)":

%C q=3: A006952, q=4: A049314, q=5: A049315, q=7: A049316, q=8: A182603,

%C q=9: A182604, q=11: A182605, q=13: A182606, q=16: A182607, q=17: A182608,

%C q=19: A182609, q=23: A182610, q=25: A182611, q=27: A182612.

%C Sequences where q is not a prime power:

%C q=6: A221578, q=10: A221579, q=12: A221580,

%C q=14: A221581, q=15: A221582, q=18: A221583, q=20: A221584.

%H Alois P. Heinz, <a href="/A221583/b221583.txt">Table of n, a(n) for n = 0..300</a>

%p with(numtheory):

%p b:= proc(n) b(n):= add(phi(d)*18^(n/d), d=divisors(n))/n-1 end:

%p a:= proc(n) a(n):= `if`(n=0, 1,

%p add(add(d*b(d), d=divisors(j)) *a(n-j), j=1..n)/n)

%p end:

%p seq(a(n), n=0..30); # _Alois P. Heinz_, Feb 03 2013

%t b[n_] := Sum[EulerPhi[d]*18^(n/d), {d, Divisors[n]}]/n-1; a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*b[d], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 30}] (* _Jean-François Alcover_, Feb 17 2014, after _Alois P. Heinz_ *)

%o (PARI)

%o N=66; x='x+O('x^N);

%o gf=prod(n=1,N, (1-x^n)/(1-18*x^n) );

%o v=Vec(gf)

%K nonn

%O 0,2

%A _Joerg Arndt_, Jan 20 2013