login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A257386
Number of Motzkin paths of length n with no level steps at height 3.
2
1, 1, 2, 4, 9, 21, 51, 126, 316, 799, 2034, 5202, 13357, 34407, 88888, 230237, 597829, 1555962, 4058944, 10612102, 27807135, 73025751, 192204957, 507025163, 1340545113, 3552492126
OFFSET
0,3
LINKS
FORMULA
a(n) = a(n-1) + Sum_{j=0..n-2} A252354(j)*a(n-j).
G.f: 1/(1-x-x^2*(1/(1-x-x^2*(1/(1-x-x^2*R(x)))))), where R(x) is the g.f. of Riordan numbers (A005043).
a(n) ~ 3^(n+3/2)/(50*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Apr 24 2015
MATHEMATICA
CoefficientList[Series[1/(1-x-x^2*(1/(1-x-x^2*(1/(1-x-x^2*(1+x-Sqrt[1-2*x-3*x^2])/(2*x*(1+x))))))), {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 24 2015 *)
PROG
(PARI) x='x+O('x^50); Vec(1/(1-x-x^2*(1/(1-x-x^2*(1/(1-x-x^2*(1+x-sqrt(1-2*x-3*x^2))/(2*x*(1+x)))))))) \\ G. C. Greubel, Apr 08 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved