login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A318008
G.f. A(x) satisfies: A( A( x - x^2 ) ) = x + x^2.
3
1, 1, 1, 2, 4, 9, 21, 50, 122, 302, 758, 1928, 4958, 12849, 33509, 88122, 233810, 621022, 1641150, 4411180, 12364368, 33073210, 71807506, 206985492, 1354944972, 3153779248, -33794258600, -62697691948, 2524565441138, 5004344042337, -186642439700891, -368380986364150, 16196862324254354, 32039943659306982, -1602823227559245434
OFFSET
1,4
COMMENTS
a(2*n-1) = A277292(n).
a(2^k-1) = 1 (mod 2) and a(2^(k+1)-2) = 1 (mod 2) for k >= 1, and a(n) is even elsewhere (conjecture).
LINKS
FORMULA
G.f. A(x) satisfies:
(1) A(-A(-x)) = x.
(2a) A(A(x)) = 2*C(x) - x, where C(x) = x + C(x)^2 is a g.f. of the Catalan numbers (A000108).
(2b) A(A( x - x^2 )) = x + x^2.
(2c) A(A( x/(1+x)^2 )) = (x + 2*x^2)/(1+x)^2.
(3a) (A(x) - A(-x))^2 = 2*(A(x) + A(-x)).
(3b) A(x)^2 - 2*A(x) - 2*A(x)*A(-x) + A(-x)^2 - 2*A(-x) = 0.
Define B(x) = (A(x) - A(-x))/2 and Catalan series C(x) = x + C(x)^2, then
(4a) B(x)^2 = (A(x) + A(-x))/2.
(4b) A(x) = B(x) + B(x)^2.
(5a) B( A(x - x^2) ) = x.
(5b) B( A(x) ) = C(x).
(6a) A( B(x) - B(x)^2 ) = x.
(6b) B( B(x) + B(x)^2 ) = C(x).
(6c) C( B(x) - B(x)^2 ) = B(x).
EXAMPLE
G.f.: A(x) = x + x^2 + x^3 + 2*x^4 + 4*x^5 + 9*x^6 + 21*x^7 + 50*x^8 + 122*x^9 + 302*x^10 + 758*x^11 + 1928*x^12 + 4958*x^13 + 12849*x^14 + 33509*x^15 + ...
such that A(A(x - x^2)) = x + x^2.
RELATED SERIES.
(a) A(A(x)) = x + 2*x^2 + 4*x^3 + 10*x^4 + 28*x^5 + 84*x^6 + 264*x^7 + 858*x^8 + 2860*x^9 + 9724*x^10 + ... + 2*A000108(n-2)*x^n + ...
(b) The odd bisection B(x) = (A(x) - A(-x))/2 begins
B(x) = x + x^3 + 4*x^5 + 21*x^7 + 122*x^9 + 758*x^11 + 4958*x^13 + 33509*x^15 + 233810*x^17 + 1641150*x^19 + 12364368*x^21 + ... + A277292(n)*x^(2*n-1) + ...
such that B(x)^2 yields the even bisection (A(x) + A(-x))/2
B(x)^2 = x^2 + 2*x^4 + 9*x^6 + 50*x^8 + 302*x^10 + 1928*x^12 + 12849*x^14 + 88122*x^16 + 621022*x^18 + 4411180*x^20 + ... + a(2*n)*x^(2*n) + ...
thus A(x) = B(x) + B(x)^2.
(c) Also, the Catalan series equals
B( B(x) + B(x)^2 ) = x + x^2 + 2*x^3 + 5*x^4 + 14*x^5 + 42*x^6 + 132*x^7 + 429*x^8 + 1430*x^9 + 4862*x^10 + ... + A000108(n-2)*x^n + ...
(d) Note that A(x - x^2) equals the series reversion of B(x):
A(x - x^2) = x - x^3 - x^5 - x^7 + 3*x^9 + 11*x^11 - 9*x^13 + 71*x^15 - 1685*x^17 + 31683*x^19 - 845729*x^21 + 28968319*x^23 + ...
where B( A(x -x^2) ) = x and A( B(x) - B(x)^2 ) = x.
PROG
(PARI) /* Using A(A( x - x^2 )) = x + x^2. */
{a(n) = my(A=x+x*O(x^n)); for(i=1, n, A = A + (x+x^2 - subst(A, x, subst(A, x, x-x^2)) )/2 ); polcoeff(A, n)}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A092423 A238438 A257104 * A199410 A091600 A261232
KEYWORD
sign
AUTHOR
Paul D. Hanna, Sep 06 2018
STATUS
approved