login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of partitions of n with n sorts of part 1.
6

%I #25 May 19 2018 12:36:13

%S 1,1,5,31,278,3287,48256,843567,17081639,392869430,10112244792,

%T 287927207846,8984122319997,304828239096197,11173376516829974,

%U 439988449921648076,18523908107054523591,830292183207722271065,39475390430795389762048,1984220622132901208082220

%N Number of partitions of n with n sorts of part 1.

%H Alois P. Heinz, <a href="/A292462/b292462.txt">Table of n, a(n) for n = 0..386</a>

%F a(n) = [x^n] 1/(1-n*x) * Product_{j=2..n} 1/(1-x^j).

%F a(n) ~ n^n * (1 + 1/n^2 + 1/n^3 + 2/n^4 + 2/n^5 + 4/n^6 + 4/n^7 + 7/n^8 + 8/n^9 + 12/n^10), for coefficients see A002865. - _Vaclav Kotesovec_, Sep 19 2017

%F a(n) = Sum_{j=0..n} A002865(j) * n^(n-j). - _Alois P. Heinz_, Sep 22 2017

%e a(2) = 5: 2, 1a1a, 1a1b, 1b1a, 1b1b.

%p b:= proc(n, i, k) option remember; `if`(n=0 or i=1, k^n,

%p `if`(i>n, 0, b(n-i, i, k))+b(n, i-1, k))

%p end:

%p a:= n-> b(n$3):

%p seq(a(n), n=0..23);

%t b[n_, i_, k_] := b[n, i, k] = If[n == 0 || i == 1, k^n, If[i > n, 0, b[n - i, i, k]] + b[n, i - 1, k]];

%t a[0] = 1; a[n_] := b[n, n, n];

%t Table[a[n], {n, 0, 23}] (* _Jean-François Alcover_, May 19 2018, translated from Maple *)

%Y Cf. A002865, A246935, A292463, A292503, A292507, A292567.

%Y Main diagonal of A292741.

%K nonn

%O 0,3

%A _Alois P. Heinz_, Sep 16 2017