login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Biharmonic numbers: numbers m such that ( Hd(m)+Cd(m) )/2 is an integer, where Hd(m) and Cd(m) are the harmonic mean and the contraharmonic (or antiharmonic) mean of the divisors of m.
3

%I #71 Sep 08 2022 08:46:01

%S 1,3,5,7,11,13,17,19,23,29,31,35,37,41,43,47,53,59,61,67,71,73,79,83,

%T 89,97,101,103,107,109,113,119,127,131,137,139,149,151,157,163,167,

%U 173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263

%N Biharmonic numbers: numbers m such that ( Hd(m)+Cd(m) )/2 is an integer, where Hd(m) and Cd(m) are the harmonic mean and the contraharmonic (or antiharmonic) mean of the divisors of m.

%C Equivalently, numbers m such that ( m*sigma_0(m)+sigma_2(m) ) / (2*sigma_1(m)) = (A038040(m) + A001157(m))/A074400(m) is an integer.

%C All odd primes belong to the sequence. In fact, if p is an odd prime, (p*sigma_0(p)+sigma_2(p))/(2*sigma_1(p)) = (p+1)/2, therefore p is a biharmonic number.

%H Amiram Eldar, <a href="/A210494/b210494.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..1000 from Bruno Berselli)

%H Marco Abrate, Stefano Barbero, Umberto Cerruti, Nadir Murru, <a href="http://arxiv.org/abs/1601.03081">The Biharmonic mean</a>, arXiv:1601.03081 [math.NT], 2016, pages 6-14.

%H Umberto Cerruti, <a href="/A210494/a210494.pdf">Numeri Armonici e Numeri Perfetti</a> (in Italian), 2013. The sequence is on page 13.

%p with(numtheory); P:=proc(q) local a,k,n;

%p for n from 1 to q do a:=divisors(n);

%p if type((n*tau(n)+add(a[k]^2,k=1..nops(a)))/(2*sigma(n)),integer) then print(n); fi; od; end; P(1000); # _Paolo P. Lava_, Oct 11 2013

%t B[n_] := (n DivisorSigma[0, n] + DivisorSigma[2, n])/(2 DivisorSigma[1, n]); Select[Range[300], IntegerQ[B[#]] &]

%o (Magma) IsInteger := func<i | i eq Floor(i)>; [n: n in [1..300] | IsInteger((n*NumberOfDivisors(n)+DivisorSigma(2,n))/(2*SumOfDivisors(n)))];

%o (Haskell)

%o a210494 n = a210494_list !! (n-1)

%o a210494_list = filter

%o (\x -> (a001157 x + a038040 x) `mod` a074400 x == 0) [1..]

%o -- _Reinhard Zumkeller_, Jan 21 2014

%o (PARI) isok(n) = denominator((n*sigma(n,0) + sigma(n,2))/(2*sigma(n)))==1; \\ _Michel Marcus_, Jan 14 2016

%Y Cf. A001599 (harmonic numbers), A020487 (antiharmonic numbers), A038040 (n*sigma_0(n)), A001157 (sigma_2(n)), A074400 (2*sigma_1(n)), A230214 (nonprime terms of A210494).

%Y Cf. A189835.

%K nonn

%O 1,2

%A _Bruno Berselli_, Oct 03 2013 - proposed by Umberto Cerruti (Department of Mathematics "Giuseppe Peano", University of Turin, Italy)