login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A303731
Number of noncrossing path sets on n nodes up to rotation and reflection with each path having a prime number of nodes.
6
1, 0, 1, 1, 1, 5, 6, 27, 53, 140, 649, 1297, 6355, 18038, 63226, 241741, 744711, 3008107, 10028056, 37270169, 138083464, 488933323, 1872525356, 6763888465, 25498771059, 95467533318, 355595703773, 1353873044078, 5077809606803, 19345857682140, 73533468653115
OFFSET
0,6
LINKS
PROG
(PARI) \\ number of path sets with restricted path lengths
NCPathSetsModDihedral(v)={ my(n=#v);
my(p=serreverse(x/(1 + x*v[1] + sum(k=2, #v, (k*2^(k-3))*x^k*v[k])) + O(x^2*x^n) )/x);
my(vars=variables(p));
my(h=substvec(p + O(x^(n\2+1)), vars, apply(t->t^2, vars)));
my(q=x*deriv(p)/p);
my(R=v[1]*x + sum(i=1, (#v-1)\2, v[2*i+1]*2^(i-1)*x*(x^2*h)^i), Q=sum(i=1, #v\2, v[2*i]*2^(i-1)*(x^2*h)^i), T=intformal((p - 1 + sum(d=2, n, eulerphi(d)*substvec(q + O(x^(n\d+1)), vars, apply(t->t^d, vars))))/x));
O(x*x^n) + (1 + T + (1 + Q + (1+R)^2*h/(1-Q) + v[2]*x^2*h)/2)/2;
}
Vec(NCPathSetsModDihedral(vector(30, k, isprime(k))))
CROSSREFS
Sequence in context: A022163 A048060 A320665 * A298175 A298144 A115761
KEYWORD
nonn
AUTHOR
Andrew Howroyd, Apr 29 2018
STATUS
approved