login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

First differences of A066194.
0

%I #26 Dec 14 2018 20:55:09

%S 1,2,-1,5,-1,-2,1,10,-1,-2,1,-5,1,2,-1,21,-1,-2,1,-5,1,2,-1,-10,1,2,

%T -1,5,-1,-2,1,42,-1,-2,1,-5,1,2,-1,-10,1,2,-1,5,-1,-2,1,-21,1,2,-1,5,

%U -1,-2,1,10,-1,-2,1,-5,1,2,-1,85,-1,-2,1,-5,1,2,-1,-10

%N First differences of A066194.

%F a(n) = A066194(n+1) - A066194(n).

%F a(n) = (1/6)*(-3 + (-1)^A007814(n) + 2^(A007814(n)+3))*(-1)^(A000120(n)+1).

%e To obtain the first 2^n-1 entries if you have the first 2^(n-1)-1 entries, adjoin 1/6 (-3 + (-1)^(1 + n) + 2^(2 + n)) to the right end of the list, negate the signs of the first 2^(n-1)-1 entries, and then adjoin that list to the right. For example for n=3 {1,2,-1} becomes {1,2,-1,5,-1,-2,1}.

%t Fold[Join[#1, {#2}, -#1] &, {1},

%t Table[1/6 (-3 + (-1)^(1 + n) + 2^(2 + n)), {n, 2, 6}]]

%t t[n_/;IntegerQ[Log2[n]]]:=1/6 (-3 + (-1)^IntegerExponent[n,2] + 8*n);

%t t[n_/;Not[IntegerQ[Log2[n]]]]:=-t[n-2^Floor[Log2[n]]];

%t Table[t[j],{j,1,15}](* recursive formulation *)

%t Table[1/6 (-3+(-1)^IntegerExponent[j,2]+2^(IntegerExponent[j,2]+3))(-1)^(Total[IntegerDigits[j,2]]+1),{j,1,15}] (* closed form *)

%Y Cf. A066194.

%K sign

%O 1,2

%A _John Erickson_, Oct 18 2018