login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A236313
Recurrence: a(2n) = 3a(n)-1, a(2n+1) = 1.
5
1, 2, 1, 5, 1, 2, 1, 14, 1, 2, 1, 5, 1, 2, 1, 41, 1, 2, 1, 5, 1, 2, 1, 14, 1, 2, 1, 5, 1, 2, 1, 122, 1, 2, 1, 5, 1, 2, 1, 14, 1, 2, 1, 5, 1, 2, 1, 41, 1, 2, 1, 5, 1, 2, 1, 14, 1, 2, 1, 5, 1, 2, 1, 365, 1, 2, 1, 5, 1, 2, 1, 14, 1, 2, 1, 5, 1, 2, 1, 41, 1, 2, 1, 5, 1, 2, 1, 14, 1, 2, 1, 5, 1, 2, 1, 122, 1, 2, 1, 5
OFFSET
1,2
COMMENTS
First differences of Stanley sequence S(0,1) (A005836) and S(1,2) (A003278).
In the binary expansion of n, delete everything left of the rightmost 1 bit, then interpret as ternary, add one, and divide by 2.
A007051 is this sequence in strictly increasing order. - Max Barrentine, Sep 11 2015
Empirical: a(n) is the smallest natural number k such that no two adjacent subsequences t and u consisting of consecutive entries of (a(1), a(2), ..., a(n-1), k) are such that the sum of the entries of t is equal to the sum of the entries of u. For example, according to this definition, a(4) cannot be equal to 1, 2, 3, or 4. - John M. Campbell, Mar 20 2017
FORMULA
a(n) = (1/2)*(1 + 3^A007814(n)) = A007051(A007814(n)).
a(n) = (1/2)*A061393(n), for n>=1.
Multiplicative with a(2^e) = (1 + 3^e)/2, a(p^e) = 1 for odd prime p. - Andrew Howroyd, Jul 31 2018
G.f.: Sum_{k>=0} 3^k * x^(2^k) / (1 + x^(2^k)). - Ilya Gutkovskiy, Dec 14 2020
Dirichlet g.f.: zeta(s)*(2^s-2)/(2^s-3). - Amiram Eldar, Dec 29 2022
MATHEMATICA
t = {1}; Do[If[OddQ[n], AppendTo[t, 1], AppendTo[t, 3*t[[n/2]] - 1]], {n, 2, 100}]; t (* T. D. Noe, Apr 10 2014 *)
a[n_] := a[n] =If[OddQ@ n, 1, 3 a[n/2] - 1]; Array[a, 92] (* Robert G. Wilson v, Jul 31 2018 *)
PROG
(PARI) a(n)=(1+3^valuation(n, 2))/2
(Magma) [(1+3^Valuation(n, 2))/2: n in [1..100]]; // Bruno Berselli, Jan 22 2014
KEYWORD
nonn,mult
AUTHOR
Ralf Stephan, Jan 22 2014
STATUS
approved