OFFSET
0,2
COMMENTS
A quarter of the count of And/Or-Trees with 2 variables [Chauvin]. - R. J. Mathar, Apr 01 2012
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..200
Brigitte Chauvin, Philippe Flajolet, Daniele Gardy and Bernhard Gittenberger, And/Or Tree Revisited, Combinat., Probal. Comput., Vol. 13, No. 4-5 (2004), pp. 475-497.
FORMULA
a(n) = 8^n*A000108(n).
From Gary W. Adamson, Jul 18 2011: (Start)
a(n) is the upper left term in M^n, M = an infinite square production matrix:
8, 8, 0, 0, 0, 0, ...
8, 8, 8, 0, 0, 0, ...
8, 8, 8, 8, 0, 0, ...
8, 8, 8, 8, 8, 0, ...
... (End)
E.g.f.: KummerM(1/2, 2, 32*x). - Peter Luschny, Aug 26 2012
G.f.: c(8*x) with c(x) the o.g.f. of A000108 (Catalan). - Philippe Deléham, Nov 15 2013
a(n) = Sum_{k=0..n} A085880(n,k)*7^k. - Philippe Deléham, Nov 15 2013
G.f.: 1/(1 - 8*x/(1 - 8*x/(1 - 8*x/(1 - ...)))), a continued fraction. - Ilya Gutkovskiy, Aug 08 2017
(n+1)*a(n) +16*(-2*n+1)*a(n-1)=0. - R. J. Mathar, Apr 14 2018
Sum_{n>=0} 1/a(n) = 1040/961 + 1536*arctan(1/sqrt(31)) / (961*sqrt(31)). - Vaclav Kotesovec, Nov 23 2021
Sum_{n>=0} (-1)^n/a(n) = 112/121 - 512*arctanh(1/sqrt(33)) / (363*sqrt(33)). - Amiram Eldar, Jan 25 2022
D-finite with recurrence +(n+1)*a(n) +16*(-2*n+1)*a(n-1)=0. - R. J. Mathar, Mar 21 2022
MATHEMATICA
Table[8^n*CatalanNumber[n], {n, 0, 20}] (* Wesley Ivan Hurt, Dec 28 2013 *)
PROG
(Magma) [8^n*Catalan(n): n in [0..20]]; // Vincenzo Librandi, Jul 19 2011
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Philippe Deléham, Feb 07 2009
STATUS
approved