login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A051262
10-factorial numbers.
5
1, 10, 200, 6000, 240000, 12000000, 720000000, 50400000000, 4032000000000, 362880000000000, 36288000000000000, 3991680000000000000, 479001600000000000000, 62270208000000000000000
OFFSET
0,2
COMMENTS
For n >= 1 a(n) is the order of the wreath product of the symmetric group S_n and the Abelian group (C_10)^n. - Ahmed Fares (ahmedfares(AT)my-deja.com), May 07 2001
FORMULA
a(n) = 10*A035279(n) = Product_{k=1..n} 10*k, n >= 1; a(0) := 1.
a(n) = n!*10^n =: (10*n)(!^10);
E.g.f.: 1/(1-10*x).
G.f.: 1/(1 - 10*x/(1 - 10*x/(1 - 20*x/(1 - 20*x/(1 - 30*x/(1 - 30*x/(1 - ...))))))), a continued fraction. - Ilya Gutkovskiy, May 12 2017
From Amiram Eldar, Jun 25 2020: (Start)
Sum_{n>=0} 1/a(n) = e^(1/10).
Sum_{n>=0} (-1)^n/a(n) = e^(-1/10). (End)
MAPLE
with(combstruct):A:=[N, {N=Cycle(Union(Z$10))}, labeled]: seq(count(A, size=n)/10, n=0..14); # Zerinvary Lajos, Dec 05 2007
MATHEMATICA
Array[#!*10^# &, 14, 0] (* Michael De Vlieger, Sep 04 2017 *)
PROG
(Magma) [10^n*Factorial(n): n in [0..20]]; // Vincenzo Librandi, Oct 05 2011
CROSSREFS
a(n) = A048176(n+1, 0)*(-1)^n (first column of unsigned triangle).
Sequence in context: A237025 A156275 A036362 * A367201 A362723 A178020
KEYWORD
easy,nonn
STATUS
approved