login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156281
Irregular table with the coefficient [x^k] of Product_{j=1..n} (x^j - (1-x^j)/(1-x)) in row n, column 0<=k.
1
1, -1, 1, 1, 0, -2, 1, -1, -1, 1, 2, 1, -3, 1, 1, 2, 1, -1, -4, -2, 0, 3, 3, -4, 1, -1, -3, -4, -3, 1, 5, 8, 5, -1, -4, -5, -3, 3, 6, -5, 1, 1, 4, 8, 11, 10, 5, -5, -15, -19, -17, -7, 5, 13, 9, 7, -1, -7, -8, 1, 10, -6, 1, -1, -5, -13, -24, -34, -39, -34, -17, 9, 38, 59, 63, 50, 26, -6, -28, -36, -25, -9, 2, 13, 17, 8, -5, -14, -4, 15, -7, 1
OFFSET
0,6
LINKS
L. Carlitz, q-Bernoulli numbers and polynomials, Duke Math. J. Volume 15, Number 4 (1948), 987-1000.
L. Carlitz, J. Riordan, Two element lattice permutation numbers and their q-generalization, Duke Math. J. Volume 31, Number 3 (1964), 371-388.
John Shareshian and Michelle L. Wachs, q-Eulerian Polynomials: Excedance Number and Major Index, arXiv:math/0608274 [math.CO], 2006, page 3.
FORMULA
T(n, k) = [x^k]( Product_{j=1..n} (x^j - (1-x^j)/(1-x)) ).
Sum_{k=0..binomial(n+1,2)} T(n, k) = A000007(n).
EXAMPLE
Irregular triangle begins as:
1;
-1, 1;
1, 0, -2, 1;
-1, -1, 1, 2, 1, -3, 1;
1, 2, 1, -1, -4, -2, 0, 3, 3, -4, 1;
-1, -3, -4, -3, 1, 5, 8, 5, -1, -4, -5, -3, 3, 6, -5, 1;
MATHEMATICA
T[n_]:= CoefficientList[(-1)^n*(1-x)^(-n)*Product[1 -2*x^j +x^(j+1), {j, n}], x];
Table[T[n], {n, 0, 10}] //Flatten (* modified by G. C. Greubel, Jan 03 2022 *)
PROG
(Sage)
def T(n, k): return ( (-1)^n*(1-x)^(-n)*product( 1 -2*x^j +x^(j+1) for j in (1..n)) ).series(x, 1+binomial(n+1, 2)).list()[k]
flatten([[T(n, k) for k in (0..binomial(n+1, 2))] for n in (0..10)]) # G. C. Greubel, Jan 03 2022
CROSSREFS
Sequence in context: A325615 A029434 A358192 * A002217 A344173 A157047
KEYWORD
tabf,sign
AUTHOR
Roger L. Bagula, Feb 07 2009
EXTENSIONS
Edited by G. C. Greubel, Jan 03 2022
STATUS
approved