login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A344173
Number of primes p < prime(n) of the form x^3 + 2*y^3 with x nonnegative and y + 1 prime such that p is a quadratic nonresidue modulo prime(n).
1
0, 1, 2, 1, 1, 1, 1, 2, 1, 3, 3, 3, 3, 3, 2, 2, 2, 4, 3, 1, 3, 4, 2, 3, 2, 3, 2, 3, 2, 4, 3, 4, 4, 4, 3, 1, 3, 5, 2, 4, 2, 3, 2, 3, 3, 3, 5, 1, 3, 3, 4, 1, 3, 4, 3, 2, 4, 4, 4, 2, 4, 4, 4, 3, 3, 5, 3, 3, 2, 3, 1, 2, 6, 4, 6, 2, 4, 3, 4, 3, 4, 5, 4, 2, 4, 5, 4, 1, 5, 3, 3, 6, 4, 4, 3, 4, 3, 3, 5, 4
OFFSET
1,3
COMMENTS
In 2001 Heath-Brown proved that there are infinitely many primes of the form x^3 + 2*y^3 with x and y nonnegative integers.
Conjecture: (i) a(n) > 0 for all n > 1. In other words, for each odd prime p, there is a prime q < p of the form x^3 + 2*y^3 with x nonnegative and y + 1 prime such that q is a quadratic nonresidue modulo p.
(ii) For any prime p > 5 not equal to 29, there is a prime q < p of the form x^3 + 2*y^3 with x nonnegative and y + 1 prime such that q is a quadratic residue modulo p.
Part (i) of the conjecture verified for all odd primes p < 2*10^9.
We even conjecture further that for any prime p > 5 there is a prime q < p of the form x^3 + 2*y^3 with x nonnegative and y + 1 prime such that q is a primitive root modulo p.
See also A344174 for a similar conjecture.
LINKS
D. R. Heath-Brown, Primes represented by x^3 + 2y^3, Acta Mathematica 186 (2001), 1-84.
EXAMPLE
a(2) = 1, and the prime 0^3 + 2*(2-1)^3 = 2 is a quadratic nonresidue modulo prime(2) = 3.
a(6) = 1, and the prime 0^3 + 2*(2-1)^3 = 2 is a quadratic nonresidue modulo prime(6) = 13.
a(20) = 1, and the prime 1^3 + 2*(2-1)^3 = 17 is a quadratic nonresidue modulo prime(20) = 71.
a(48) = 1, and the prime 1^3 + 2*(2-1)^3 = 3 is a quadratic nonresidue modulo prime(48) = 223.
a(88) = 1, and the prime 3^3 + 2*(3-1)^3 = 43 is a quadratic nonresidue modulo prime(88) = 457.
MATHEMATICA
tab={0}; Do[p:=p=Prime[n]; tt={}; Do[If[PrimeQ[b+1]&&PrimeQ[a^3+2b^3]&&JacobiSymbol[a^3+2b^3, p]==-1, tt=Append[tt, a^3+2b^3]], {a, 0, (p-1)^(1/3)}, {b, 1, ((p-1-a^3)/2)^(1/3)}]; tab=Append[tab, Length[Union[tt]]], {n, 2, 100}]; Print[tab]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, May 10 2021
STATUS
approved