login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A344170
Numbers k such that 3^(2*k+1) - 3^k - 1 is prime.
1
1, 2, 5, 6, 7, 10, 17, 25, 31, 88, 95, 137, 141, 416, 610, 781, 800, 2353, 7291, 9627, 9749, 15946, 19215
OFFSET
1,2
COMMENTS
a(24) > 20000.
MAPLE
for k from 1 to 3000 do if isprime(3^(2*k + 1) - 3^k - 1) then print(k); end if; end do
MATHEMATICA
Do[If[PrimeQ[3^(2k + 1) - 3^k - 1], Print[k]], {k, 1, 3000}]
PROG
(PARI) for(k=1, 3e3, if(isprime(3^(2*k+1)-3^k-1), print1(k", ")))
(SageMath)
for k in range(1, 3000):
if is_prime(3^(2 * k + 1) - 3^k - 1):
print(k)
CROSSREFS
Cf. A344263.
Sequence in context: A284393 A287366 A080589 * A292115 A283476 A059791
KEYWORD
nonn,more
AUTHOR
Reza K Ghazi, May 10 2021
EXTENSIONS
a(19)-a(21) from Michael S. Branicky, May 11 2021
a(22)-a(23) from Reza K Ghazi, May 14 2021
STATUS
approved