login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A156284
From every interval (2^(m-1), 2^m), m >= 3, we remove primes p for which 2^m-p is a prime that was not removed for smaller values of m; the sequence gives all remaining odd primes.
8
3, 7, 11, 17, 19, 23, 31, 37, 43, 59, 67, 71, 73, 79, 83, 89, 101, 103, 107, 113, 127, 131, 137, 139, 151, 157, 163, 179, 181, 191, 193, 199, 211, 223, 227, 229, 241, 251, 257, 263, 269
OFFSET
1,1
COMMENTS
Powers of 2 are not expressible as sums of two primes from this sequence. This is attained by a more economical algorithm than that for construction of A152451. If A(x) is the counting function for the terms a(n) <= x, then A(x) = pi(x) - O(x/(log^2(x)). It is known that the approximation of pi(x) by x/log(x) gives the remainder term as, at best, O(x/log^2(x)). Therefore beginning our process from m >= M (with arbitrarily large M), we obtain a sequence which essentially is indistinguishable from the sequence of all odd primes with the help of the approximation of pi(x) by x/log(x). Hence it is in principle impossible to prove the binary Goldbach conjecture by such an approximation of pi(x).
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, Feb 07 2009
STATUS
approved