login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle T(n,k) read by rows: T(n,k) = (m*n - m*k + 1)*T(n - 1, k - 1) + k*(m*k - (m - 1))*T(n - 1, k) where m = 2.
3

%I #18 May 31 2016 03:23:24

%S 1,1,1,1,9,1,1,59,42,1,1,361,925,154,1,1,2175,16402,8937,507,1,1,

%T 13061,265605,365050,67500,1587,1,1,78379,4127746,12611845,5592850,

%U 442242,4852,1,1,470289,62935117,398536866,365184855,68337922,2652742,14676,1

%N Triangle T(n,k) read by rows: T(n,k) = (m*n - m*k + 1)*T(n - 1, k - 1) + k*(m*k - (m - 1))*T(n - 1, k) where m = 2.

%C The general recursion relation T(n,k)= (m*n - m*k + 1)*T(n - 1, k - 1) + k*(m*k - (m - 1))*T(n - 1, k) connects several sequences for differing values of m. These are: m = 0 yields A008277, m = 1 yields A166960, m = 2 yields this sequence, and m = 3 yields A166962. These sequences are, in essence, generalized Stirling numbers of the second kind. - _G. C. Greubel_, May 29 2016

%H G. C. Greubel, <a href="/A166961/b166961.txt">Table of n, a(n) for the first 25 rows</a>

%F T(n,k)= (2*n - 2*k + 1)*T(n - 1, k - 1) + k*(2*k - 1)*T(n - 1, k).

%e Triangle starts:

%e {1},

%e {1, 1},

%e {1, 9, 1},

%e {1, 59, 42, 1},

%e {1, 361, 925, 154, 1},

%e {1, 2175, 16402, 8937, 507, 1},

%e {1, 13061, 265605, 365050, 67500, 1587, 1},

%e {1, 78379, 4127746, 12611845, 5592850, 442242, 4852, 1},

%e {1, 470289, 62935117, 398536866, 365184855, 68337922, 2652742, 14676, 1},

%e {1, 2821751, 951081090, 11977188769, 20817224001, 7796966547, 719764976, 15024830, 44181, 1}

%e ...

%t A[n_, 1] := 1; A[n_, n_] := 1; A[n_, k_] := (2*n - 2*k + 1)*A[n - 1, k - 1] + k*(2*k - 1)*A[n - 1, k]; Flatten[ Table[A[n, k], {n, 10}, {k, n}]] (* modified by _G. C. Greubel_, May 29 2016 *)

%Y Cf. A008277, A166960, A166961.

%K nonn,tabl

%O 1,5

%A _Roger L. Bagula_ and _Mats Granvik_, Oct 25 2009