login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A027875
a(n) = Product_{i=1..n} (7^i - 1).
18
1, 6, 288, 98496, 236390400, 3972777062400, 467389275837235200, 384914699001548351078400, 2218956256804125934296760320000, 89542886518308517126993353029713920000
OFFSET
0,2
LINKS
FORMULA
2*(10)^(2m)|a(n) where 4*m <= n <= 4*m+3, for m >= 1. - G. C. Greubel, Nov 20 2015
a(n) ~ c * 7^(n*(n+1)/2), where c = Product_{k>=1} (1-1/7^k) = A132035 = 0.836795407089037871026729798146136241352436435876... . - Vaclav Kotesovec, Nov 21 2015
a(n) = 7^(binomial(n+1,2))*(1/7;1/7)_{n}, where (a;q)_{n} is the q-Pochhammer symbol. - G. C. Greubel, Dec 24 2015
a(n) = Product_{i=1..n} A024075(i). - Michel Marcus, Dec 27 2015
G.f.: Sum_{n>=0} 7^(n*(n+1)/2)*x^n / Product_{k=0..n} (1 + 7^k*x). - Ilya Gutkovskiy, May 22 2017
Sum_{n>=0} (-1)^n/a(n) = A132035. - Amiram Eldar, May 07 2023
MATHEMATICA
Abs@QPochhammer[7, 7, Range[0, 10]] (* Vladimir Reshetnikov, Nov 20 2015 *)
Table[Product[7^k-1, {k, n}], {n, 0, 10}] (* Harvey P. Dale, Jul 28 2022 *)
PROG
(PARI) a(n) = prod(i=1, n, 7^i-1); \\ Michel Marcus, Nov 21 2015
(Magma) [1] cat [&*[ 7^k-1: k in [1..n] ]: n in [1..11]]; // Vincenzo Librandi, Dec 24 2015
CROSSREFS
Cf. A005329 (q=2), A027871 (q=3), A027637 (q=4), A027872 (q=5), A027873 (q=6), A027876 (q=8), A027877 (q=9), A027878 (q=10), A027879 (q=11), A027880 (q=12).
Cf. A132035.
Sequence in context: A203051 A128792 A340540 * A203422 A042119 A196980
KEYWORD
nonn
STATUS
approved