OFFSET
1,2
COMMENTS
Each term divides its successor, as in A203423.
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..35
FORMULA
a(n) = (n+1)^(n-1) * Product_{i=2..n} (-i)^(i-1). - Kevin Ryde, Apr 17 2022
a(n) = (-1)^binomial(n,2) * n! * (Gamma(n+2))^n / BarnesG(n+3). - G. C. Greubel, Dec 08 2023
MATHEMATICA
(* First program *)
f[j_] := 1/(j + 1); z = 16;
v[n_] := Product[Product[f[k] - f[j], {j, 1, k - 1}], {k, 2, n}]
1/Table[v[n], {n, z}] (* A203422 *)
Table[v[n]/(2 v[n + 1]), {n, z}] (* A203423 *)
(* Second program *)
Table[(-1)^Binomial[n, 2]*n!*(Gamma[n+2])^n/BarnesG[n+3], {n, 20}] (* G. C. Greubel, Dec 08 2023 *)
PROG
(PARI) a(n) = my(f=n+1); prod(i=-n, -2, f*=i); \\ Kevin Ryde, Apr 17 2022
(Magma)
BarnesG:= func< n | (&*[Factorial(k): k in [0..n-2]]) >;
A203422:= func< n | (-1)^Binomial(n, 2)*Factorial(n)*(Factorial(n+1))^n/BarnesG(n+3) >;
[A203422(n): n in [1..20]]; // G. C. Greubel, Dec 08 2023
(SageMath)
def BarnesG(n): return product(factorial(k) for k in range(n-1))
def A203422(n): return (-1)^binomial(n, 2)*gamma(n+1)*(gamma(n+2))^n/BarnesG(n+3)
[A203422(n) for n in range(1, 21)] # G. C. Greubel, Dec 08 2023
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Clark Kimberling, Jan 02 2012
STATUS
approved