login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A203422
Reciprocal of Vandermonde determinant of (1/2,1/3,...,1/(n+1)).
4
1, -6, -288, 144000, 933120000, -94097687040000, -172670008499896320000, 6607002383077924814192640000, 5946302144770132332773376000000000000, -140210694122490812598274255654748160000000000000
OFFSET
1,2
COMMENTS
Each term divides its successor, as in A203423.
LINKS
FORMULA
a(n) = (n+1)^(n-1) * Product_{i=2..n} (-i)^(i-1). - Kevin Ryde, Apr 17 2022
a(n) = (-1)^binomial(n,2) * n! * (Gamma(n+2))^n / BarnesG(n+3). - G. C. Greubel, Dec 08 2023
MATHEMATICA
(* First program *)
f[j_] := 1/(j + 1); z = 16;
v[n_] := Product[Product[f[k] - f[j], {j, 1, k - 1}], {k, 2, n}]
1/Table[v[n], {n, z}] (* A203422 *)
Table[v[n]/(2 v[n + 1]), {n, z}] (* A203423 *)
(* Second program *)
Table[(-1)^Binomial[n, 2]*n!*(Gamma[n+2])^n/BarnesG[n+3], {n, 20}] (* G. C. Greubel, Dec 08 2023 *)
PROG
(PARI) a(n) = my(f=n+1); prod(i=-n, -2, f*=i); \\ Kevin Ryde, Apr 17 2022
(Magma)
BarnesG:= func< n | (&*[Factorial(k): k in [0..n-2]]) >;
A203422:= func< n | (-1)^Binomial(n, 2)*Factorial(n)*(Factorial(n+1))^n/BarnesG(n+3) >;
[A203422(n): n in [1..20]]; // G. C. Greubel, Dec 08 2023
(SageMath)
def BarnesG(n): return product(factorial(k) for k in range(n-1))
def A203422(n): return (-1)^binomial(n, 2)*gamma(n+1)*(gamma(n+2))^n/BarnesG(n+3)
[A203422(n) for n in range(1, 21)] # G. C. Greubel, Dec 08 2023
CROSSREFS
Sequence in context: A128792 A340540 A027875 * A042119 A196980 A197165
KEYWORD
sign,easy
AUTHOR
Clark Kimberling, Jan 02 2012
STATUS
approved