|
|
A203422
|
|
Reciprocal of Vandermonde determinant of (1/2,1/3,...,1/(n+1)).
|
|
4
|
|
|
1, -6, -288, 144000, 933120000, -94097687040000, -172670008499896320000, 6607002383077924814192640000, 5946302144770132332773376000000000000, -140210694122490812598274255654748160000000000000
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Each term divides its successor, as in A203423.
|
|
LINKS
|
|
|
FORMULA
|
a(n) = (n+1)^(n-1) * Product_{i=2..n} (-i)^(i-1). - Kevin Ryde, Apr 17 2022
|
|
MATHEMATICA
|
f[j_] := 1/(j + 1); z = 16;
v[n_] := Product[Product[f[k] - f[j], {j, 1, k - 1}], {k, 2, n}]
1/Table[v[n], {n, 1, z}] (* A203422 *)
Table[v[n]/(2 v[n + 1]), {n, 1, z - 1}] (* A203423 *)
|
|
PROG
|
(PARI) a(n) = my(f=n+1); prod(i=-n, -2, f*=i); \\ Kevin Ryde, Apr 17 2022
|
|
CROSSREFS
|
|
|
KEYWORD
|
sign,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|