login
A027880
a(n) = Product_{i=1..n} (12^i - 1).
15
1, 11, 1573, 2716571, 56328099685, 14016177372718235, 41852067359921313500005, 1499635200191700040518673659035, 644815685260091508353787979063721364325, 3327107302821620489265827570792988872583047378075
OFFSET
0,2
COMMENTS
In general, Product_{i=1..n} (q^i-1) ~ c * q^(n*(n+1)/2), where c = Product_{k >= 1} (1-1/q^k). - Vaclav Kotesovec, Nov 21 2015
LINKS
FORMULA
a(n) ~ c * 12^(n*(n+1)/2), where c = Product_{k>=1} (1-1/12^k) = 0.909726268905994888636362046977080249120791691941... . - Vaclav Kotesovec, Nov 21 2015
(11)^n*(13)^(floor(n/2))|a(n) for n>=0. - G. C. Greubel, Nov 24 2015
Equals 12^(binomial(n+1,2))*(1/12;1/12)_{n}, where (a;q)_{n} is the q-Pochhammer symbol. - G. C. Greubel, Dec 24 2015
G.f.: Sum_{n>=0} 12^(n*(n+1)/2)*x^n / Product_{k=0..n} (1 + 12^k*x). - Ilya Gutkovskiy, May 22 2017
Sum_{n>=0} (-1)^n/a(n) = A132268. - Amiram Eldar, May 07 2023
MATHEMATICA
FoldList[Times, 1, 12^Range[10]-1] (* Harvey P. Dale, Mar 01 2015 *)
Abs@QPochhammer[12, 12, Range[0, 30]] (* G. C. Greubel, Nov 24 2015 *)
PROG
(PARI) a(n) = prod(k=1, n, 12^k - 1) \\ Altug Alkan, Nov 25 2015
(Magma) [1] cat [&*[12^k-1: k in [1..n]]: n in [1..11]]; // Vincenzo Librandi, Dec 24 2015
CROSSREFS
Cf. A005329 (q=2), A027871 (q=3), A027637 (q=4), A027872 (q=5), A027873 (q=6), A027875 (q=7), A027876 (q=8), A027877 (q=9), A027878 (q=10), A027879 (q=11).
Cf. A132268.
Sequence in context: A351597 A076168 A053884 * A222841 A287035 A297004
KEYWORD
nonn
STATUS
approved