The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A027882 a(n) = sum_{k>=1} k^n (2/3)^k. 4
 2, 6, 30, 222, 2190, 27006, 399630, 6899262, 136125390, 3021538686, 74520313230, 2021686771902, 59833117024590, 1918366107872766, 66237821635330830, 2450438532592334142, 96696400596369539790 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS Table of n, a(n) for n=0..16. C. G. Bower, Transforms Steffen Greenfield, Source Index entries for sequences related to necklaces FORMULA Also "CIJ" (necklace, indistinct, labeled) transform of 2, 2, 2, 2... E.g.f. (for offset 1): -log(3-2*exp(x)). Sum_{k=1..n) 2^k*(k-1)!*Stirling2(n, k). - Vladeta Jovovic, Sep 14 2003 a(n) ~ n! / (log(3/2))^(n+1). - Vaclav Kotesovec, Oct 07 2013 MATHEMATICA Table[ PolyLog[n, 2/3], {n, 0, -18, -1}] (* Robert G. Wilson v, Aug 05 2010 *) Table[Sum[StirlingS2[n, k] * (k-1)! * 2^k, {k, 1, n}], {n, 1, 20}] (* Vaclav Kotesovec, Jul 12 2018 *) PROG (PARI) a(n)=polylog(-n, 2/3) \\ Charles R Greathouse IV, Aug 27 2014 CROSSREFS Cf. A000629, A032183. Sequence in context: A088160 A112317 A089459 * A306782 A106209 A003266 Adjacent sequences: A027879 A027880 A027881 * A027883 A027884 A027885 KEYWORD nonn AUTHOR Stephen J. Greenfield (greenfie(AT)math.rutgers.edu) EXTENSIONS More terms from Christian G. Bower STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 23 13:40 EDT 2024. Contains 372763 sequences. (Running on oeis4.)