The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A027882 a(n) = sum_{k>=1} k^n (2/3)^k. 4
2, 6, 30, 222, 2190, 27006, 399630, 6899262, 136125390, 3021538686, 74520313230, 2021686771902, 59833117024590, 1918366107872766, 66237821635330830, 2450438532592334142, 96696400596369539790 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,1
LINKS
C. G. Bower, Transforms
Steffen Greenfield, Source
FORMULA
Also "CIJ" (necklace, indistinct, labeled) transform of 2, 2, 2, 2...
E.g.f. (for offset 1): -log(3-2*exp(x)). Sum_{k=1..n) 2^k*(k-1)!*Stirling2(n, k). - Vladeta Jovovic, Sep 14 2003
a(n) ~ n! / (log(3/2))^(n+1). - Vaclav Kotesovec, Oct 07 2013
MATHEMATICA
Table[ PolyLog[n, 2/3], {n, 0, -18, -1}] (* Robert G. Wilson v, Aug 05 2010 *)
Table[Sum[StirlingS2[n, k] * (k-1)! * 2^k, {k, 1, n}], {n, 1, 20}] (* Vaclav Kotesovec, Jul 12 2018 *)
PROG
(PARI) a(n)=polylog(-n, 2/3) \\ Charles R Greathouse IV, Aug 27 2014
CROSSREFS
Sequence in context: A088160 A112317 A089459 * A306782 A106209 A003266
KEYWORD
nonn
AUTHOR
Stephen J. Greenfield (greenfie(AT)math.rutgers.edu)
EXTENSIONS
More terms from Christian G. Bower
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 23 13:40 EDT 2024. Contains 372763 sequences. (Running on oeis4.)