OFFSET
2,2
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 2..200 (first 591 terms from Todd Silvestri)
Index entries for linear recurrences with constant coefficients, signature (57, -399, 343).
FORMULA
G.f.: x^2/((1-x)*(1-7*x)*(1-49*x)).
a(n) = (7^(n+1)-1)*(7^(n+2)-1)/288. - Todd Silvestri, Dec 16 2014
E.g.f.: (343*exp(49*x)-56*exp(7*x)+exp(x))/288. - Robert Israel, Dec 16 2014
a(n+3) = 57*a(n+2) - 399*a(n+1) + 343*a(n). - Robert Israel, Dec 16 2014
MAPLE
seq((7^(n+1)-1)*(7^(n+2)-1)/288, n=0..30); # Robert Israel, Dec 16 2014
MATHEMATICA
a[n_Integer/; n>=0]:=(7^(n+1)-1)*(7^(n+2)-1)/288 (* Todd Silvestri, Dec 16 2014 *)
Table[QBinomial[n, 2, 7], {n, 2, 20}] (* Vincenzo Librandi, Aug 12 2016 *)
PROG
(Sage) [gaussian_binomial(n, 2, 7) for n in range(2, 17)] # Zerinvary Lajos, May 28 2009
(PARI) Vec(1/((1-x)*(1-7*x)*(1-49*x)) + O(x^30)) \\ Michel Marcus, Dec 16 2014
(PARI) r=2; q=7; for(n=r, 30, print1(prod(j=1, r, (1-q^(n-j+1))/(1-q^j)), ", ")) \\ G. C. Greubel, Jun 13 2018
(PARI) lista(nn, na=2, q=7) = qp=matpascal(nn+q, q); vector(nn, n, qp[n+na, n]); \\ Michel Marcus, Jun 13 2018
(Magma) r:=2; q:=7; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Aug 12 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Offset changed by Vincenzo Librandi, Aug 12 2016
STATUS
approved