login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A122533
Coefficients of the series giving the best rational approximations to 1/e.
2
57, 3667, 525153, 133794291, 53325113593, 30632012923107, 23965268215166337, 24499823488381227043, 31709265214216777648761, 50678828500275334077977523, 98023476146668402679417310817
OFFSET
1,1
COMMENTS
The series giving the best rational approximations to 1/e is 1/e = 1/3 + 2/a(1) - 2/a(2) + 2/a(3) - ... The continued fraction for 1/e is [0;2,1, 2,1,1,4,1,1,6,1,1,8...] and the above best approximations give every third convergent, the convergents deriving from [0;2,1], [0;2,1,2, 1,1], [0;2,1,2,1,1,4,1,1] and so forth are the partial sums of the above infinite series.
LINKS
FORMULA
a(n+3) = (16*n^2 + 96*n + 141) * a(n+2) + (2*n+7)*(16*n^2 + 64*n + 61)/(2*n+3) * a(n+1) - (2*n+7)/(2*n+3) * a(n). This recurrence relationship is identical to A122523, for the best approximations to e.
MATHEMATICA
RecurrenceTable[{a[n]== ((2*n-3)*(16*n^2 -3)*a[n-1] +(2*n+1)*(16*(n-1)^2 - 3)*a[n-2] -(2*n+1)*a[n-3])/(2*n-3), a[1]==57, a[2]==3667, a[3]==525153}, a, {n, 30}] (* G. C. Greubel, Oct 27 2024 *)
PROG
(Magma) I:=[57, 3667, 525153]; [n le 3 select I[n] else ((2*n-3)*(16*n^2 - 3)*Self(n-1) + (2*n+1)*(16*(n-1)^2 -3)*Self(n-2) - (2*n+1)*Self(n-3))/(2*n-3): n in [1..30]]; // G. C. Greubel, Oct 27 2024
(SageMath)
@CachedFunction
def a(n): # a = A122533
if n<4: return (0, 57, 3667, 525153)[n]
else: return ((2*n-3)*(16*n^2 -3)*a(n-1) +(2*n+1)*(16*(n-1)^2 -3)*a(n-2) -(2*n+1)*a(n-3))/(2*n-3)
[a(n) for n in range(1, 31)] # G. C. Greubel, Oct 27 2024
CROSSREFS
Sequence in context: A022231 A239823 A012058 * A015259 A218808 A218194
KEYWORD
frac,nonn
AUTHOR
Gene Ward Smith, Sep 17 2006
STATUS
approved