|
|
A022229
|
|
Gaussian binomial coefficients [ n,11 ] for q = 6.
|
|
1
|
|
|
|
OFFSET
|
11,2
|
|
REFERENCES
|
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
|
|
LINKS
|
|
|
FORMULA
|
G.f.: x^11/((1-x)*(1-6*x)*(1-36*x)*(1-216*x)*(1-1296*x)*(1-7776*x)*(1-46656*x)*(1-279936*x)*(1-1679616*x)*(1-10077696*x)*(1-60466176*x)*(1-362797056*x)). - Vincenzo Librandi, Aug 12 2016
a(n) = Product_{i=1..11} (6^(n-i+1)-1)/(6^i-1), by definition. - Vincenzo Librandi, Aug 12 2016
|
|
MAPLE
|
seq(eval(expand(QDifferenceEquations:-QBinomial(n, 11, q)), q=6), n=11..20); # Robert Israel, Oct 14 2014
|
|
MATHEMATICA
|
|
|
PROG
|
(Sage) [gaussian_binomial(n, 11, 6) for n in range(11, 17)] # Zerinvary Lajos, May 28 2009
(Magma) r:=11; q:=6; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Oct 14 2014
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|