login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157213
Positive numbers y such that y^2 is of the form x^2+(x+137)^2 with integer x.
4
97, 137, 277, 305, 685, 1565, 1733, 3973, 9113, 10093, 23153, 53113, 58825, 134945, 309565, 342857, 786517, 1804277, 1998317, 4584157, 10516097, 11647045, 26718425, 61292305, 67883953, 155726393, 357237733, 395656673, 907639933
OFFSET
1,1
COMMENTS
(-65, a(1)) and (A129544(n), a(n+1)) are solutions (x, y) to the Diophantine equation x^2+(x+137)^2 = y^2.
FORMULA
a(n) = 6*a(n-3)-a(n-6) for n > 6; a(1)=97, a(2)=137, a(3)=277, a(4)=305, a(5)=685, a(6)=1565.
G.f.: x*(1-x)*(97+234*x+511*x^2+234*x^3+97*x^4)/(1-6*x^3+x^6).
a(3*k-1) = 137*A001653(k) for k >= 1.
Limit_{n -> oo} a(n)/a(n-3) = 3+2*sqrt(2).
Limit_{n -> oo} a(n)/a(n-1) = (3+2*sqrt(2))*(18-5*sqrt(2))^2/(18+5*sqrt(2))^2 for n mod 3 = 1.
Limit_{n -> oo} a(n)/a(n-1) = (18+5*sqrt(2))/(18-5*sqrt(2)) for n mod 3 = {0, 2}.
EXAMPLE
(-65, a(1)) = (-65, 97) is a solution: (-65)^2+(-65+137)^2 = 4225+5184 = 9409 = 97^2.
(A129544(1), a(2)) = (0, 137) is a solution: 0^2+(0+137)^2 = 18769 = 137^2.
(A129544(3), a(4)) = (136, 305) is a solution: 136^2+(136+137)^2 = 18496+74529 = 93025 = 305^2.
PROG
(PARI) {forstep(n=-68, 1000000000, [3, 1], if(issquare(n^2+(n+137)^2, &k), print1(k, ", ")))}
CROSSREFS
Cf. A129544, A001653, A157214 (decimal expansion of 18+5*sqrt(2)), A157215 (decimal expansion of 18-5*sqrt(2)), A157216 (decimal expansion of (18+5*sqrt(2))/(18-5*sqrt(2))).
Sequence in context: A216311 A258877 A073076 * A000923 A142528 A139500
KEYWORD
nonn,easy
AUTHOR
Klaus Brockhaus, Feb 25 2009
STATUS
approved