login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156606
a(n)=number of even digits in prime(n) + number of prime digits in prime(n).
0
2, 1, 1, 1, 0, 1, 1, 0, 3, 2, 1, 2, 1, 2, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 1, 3, 1, 2, 1, 1, 1, 2, 2, 2, 2, 1, 1, 0, 1, 1, 0, 2, 5, 5, 4, 4, 3, 3, 3, 4, 4, 3, 3, 4, 3, 4, 3, 3, 1, 2, 2, 2, 3, 3, 2, 3, 2, 3, 3, 2, 3, 2, 2, 2, 2, 1, 3, 2, 3, 2, 3
OFFSET
1,1
COMMENTS
Even digits are 2, 4, 6 or 8 and prime digits are 2, 3, 5 or 7.
EXAMPLE
If prime(1)=2(even, prime), then 1+1=2=a(1). If prime(2)=3(0, prime), then 0+1=1=a(2). If prime(3)=5(0, prime), then 0+1+1=a(3). If prime(4)=7(0, prime), then 0+1=1+a(4). If prime(5)=11(0, 0), then 0+0=0=a(5), etc.
MAPLE
npris := proc(n) local dgs, a, i ; dgs := convert(n, base, 10) ; a := 0 ; for i in dgs do if isprime(i) then a := a+1 ; fi; od: a ; end: nevsnot0 := proc(n) local dgs, a, i ; dgs := convert(n, base, 10) ; a := 0 ; for i in dgs do if i mod 2 = 0 and i <> 0 then a := a+1 ; fi; od: a ; end: for n from 1 to 800 do p := ithprime(n) ; printf("%d, ", nevsnot0(p)+npris(p)) ; od: # R. J. Mathar, Feb 13 2009
MATHEMATICA
nepd[n_]:=Module[{p=IntegerDigits[Prime[n]]}, Count[p, _?EvenQ]+Count[ p, _?PrimeQ]]; Array[nepd, 120] (* Harvey P. Dale, Dec 09 2017 *)
CROSSREFS
Sequence in context: A053252 A261029 A117195 * A324606 A194087 A107034
KEYWORD
nonn,base,less
AUTHOR
EXTENSIONS
Corrected by Harvey P. Dale, Dec 09 2017
STATUS
approved