login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156608
Triangle T(n, k, m) = round( t(n,m)/(t(k,m)*t(n-k,m)) ), with T(0, k, m) = 1, where t(n, k) = Product_{j=1..n} A129862(k+1, j), t(n, 0) = n!, and m = 2, read by rows.
5
1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, -2, 2, 2, -2, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, -1, 2, 2, -1, 1, 1, 1, -2, 2, 2, -4, 2, 2, -2, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, -1, 2, 2, -1, 2, 2, -1, 1, 1
OFFSET
0,17
COMMENTS
The original definition of this sequence said it was based on the Cartan matrix of type D_n, so that matrix is somehow implicitly involved. - N. J. A. Sloane, Jun 25 2021
FORMULA
T(n, k, m) = round( t(n,m)/(t(k,m)*t(n-k,m)) ), with T(0, k, m) = 1, where t(n, k) = Product_{j=1..n} A129862(k+1, j), t(n, 0) = n!, and m = 2.
EXAMPLE
Triangle begins:
1;
1, 1;
1, -1, 1;
1, 1, 1, 1;
1, 1, -1, 1, 1;
1, -2, 2, 2, -2, 1;
1, 1, 2, 2, 2, 1, 1;
1, 1, -1, 2, 2, -1, 1, 1;
1, -2, 2, 2, -4, 2, 2, -2, 1;
1, 1, 2, 2, 2, 2, 2, 2, 1, 1;
1, 1, -1, 2, 2, -1, 2, 2, -1, 1, 1;
MATHEMATICA
(* First program *)
b[n_, k_, d_]:= If[n==k, 2, If[(k==d && n==d-2) || (n==d && k==d-2), -1, If[(k==n- 1 || k==n+1) && n<=d-1 && k<=d-1, -1, 0]]];
M[d_]:= Table[b[n, k, d], {n, d}, {k, d}];
p[x_, n_]:= If[n==0, 1, CharacteristicPolynomial[M[n], x]];
f = Table[p[x, n], {n, 0, 20}];
t[n_, k_]:= If[k==0, n!, Product[f[[j+1]], {j, n-1}]]/.x -> k+1;
T[n_, k_, m_]:= Round[t[n, m]/(t[k, m]*t[n-k, m])];
Table[T[n, k, 2], {n, 0, 15}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Jun 23 2021 *)
(* Second program *)
f[n_, x_]:= f[n, x]= If[n<2, (2-x)^n, (2-x)*LucasL[2*(n-1), Sqrt[-x]] ];
t[n_, k_]:= t[n, k]= If[k==0, n!, Product[f[j, x], {j, n-1}]]/.x -> (k+1);
T[n_, k_, m_]:= T[n, k, m]= Round[t[n, m]/(t[k, m]*t[n-k, m])];
Table[T[n, k, 2], {n, 0, 15}, {k, 0, n}]//Flatten (* G. C. Greubel, Jun 23 2021 *)
PROG
(Sage)
@CachedFunction
def f(n, x): return (2-x)^n if (n<2) else 2*(2-x)*sum( ((n-1)/(2*n-j-2))*binomial(2*n-j-2, j)*(-x)^(n-j-1) for j in (0..n-1) )
def g(n, k): return factorial(n) if (k==0) else product( f(j, k+1) for j in (1..n-1) )
def T(n, k, m): return round( g(n, m)/(g(k, m)*g(n-k, m)) )
flatten([[T(n, k, 2) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Jun 23 2021
CROSSREFS
Cf. A129862, A007318 (m=0), this sequence (m=2), A156609 (m=3), A156610 (m=4), A156612.
Sequence in context: A271518 A352629 A106825 * A368752 A323827 A275850
KEYWORD
sign,tabl
AUTHOR
Roger L. Bagula, Feb 11 2009
EXTENSIONS
Edited by G. C. Greubel, Jun 23 2021
STATUS
approved