login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156609
Triangle T(n, k, m) = round( t(n,m)/(t(k,m)*t(n-k,m)) ), with T(0, k, m) = 1, where t(n, k) = Product_{j=1..n} A129862(k+1, j), t(n, 0) = n!, and m = 3, read by rows.
5
1, 1, 1, 1, -2, 1, 1, 4, 4, 1, 1, -4, 8, -4, 1, 1, 4, 8, 8, 4, 1, 1, -4, 8, -8, 8, -4, 1, 1, 4, 8, 8, 8, 8, 4, 1, 1, -4, 8, -8, 8, -8, 8, -4, 1, 1, 4, 8, 8, 8, 8, 8, 8, 4, 1, 1, -4, 8, -8, 8, -8, 8, -8, 8, -4, 1
OFFSET
0,5
COMMENTS
Cartan_Dn refers to a Cartan matrix of type D_n. - N. J. A. Sloane, Jun 25 2021
FORMULA
T(n, k, m) = round( t(n,m)/(t(k,m)*t(n-k,m)) ), with T(0, k, m) = 1, where t(n, k) = Product_{j=1..n} A129862(k+1, j), t(n, 0) = n!, and m = 3.
T(n, k) defined by T(n, 0) = T(n, n) = 1, T(2, 1) = -2, T(n, 1) = T(n, n-1) = 4*(-1)^(n+1), T(n, 2) = T(n, n-2) = 8, T(n, k) = 8*(-1)^k if n mod 2 = 0, and T(n, k) = 8 otherwise. - G. C. Greubel, Jun 24 2021
EXAMPLE
Triangle begins:
1;
1, 1;
1, -2, 1;
1, 4, 4, 1;
1, -4, 8, -4, 1;
1, 4, 8, 8, 4, 1;
1, -4, 8, -8, 8, -4, 1;
1, 4, 8, 8, 8, 8, 4, 1;
1, -4, 8, -8, 8, -8, 8, -4, 1;
1, 4, 8, 8, 8, 8, 8, 8, 4, 1;
1, -4, 8, -8, 8, -8, 8, -8, 8, -4, 1;
MATHEMATICA
(* First program *)
b[n_, k_, d_]:= If[n==k, 2, If[(k==d && n==d-2) || (n==d && k==d-2), -1, If[(k==n- 1 || k==n+1) && n<=d-1 && k<=d-1, -1, 0]]];
M[d_]:= Table[b[n, k, d], {n, d}, {k, d}];
p[x_, n_]:= If[n==0, 1, CharacteristicPolynomial[M[n], x]];
f = Table[p[x, n], {n, 0, 20}];
t[n_, k_]:= If[k==0, n!, Product[f[[j+1]], {j, n-1}]]/.x -> k+1;
T[n_, k_, m_]:= Round[t[n, m]/(t[k, m]*t[n-k, m])];
Table[T[n, k, 3], {n, 0, 15}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Jun 23 2021 *)
(* Second program *)
f[n_, x_]:= f[n, x]= If[n<2, (2-x)^n, (2-x)*LucasL[2*(n-1), Sqrt[-x]] ];
t[n_, k_]:= t[n, k]= If[k==0, n!, Product[f[j, x], {j, n-1}]]/.x -> (k+1);
T[n_, k_, m_]:= T[n, k, m]= Round[t[n, m]/(t[k, m]*t[n-k, m])];
Table[T[n, k, 3], {n, 0, 15}, {k, 0, n}]//Flatten (* G. C. Greubel, Jun 23 2021 *)
PROG
(Magma)
function T(n, k)
if k eq 0 or k eq n then return 1;
elif n eq 2 and k eq 1 then return -2;
elif k eq 1 or k eq n-1 then return 4*(-1)^(n+1);
elif k eq 2 or k eq n-2 then return 8;
elif (n mod 2) eq 0 then return 8*(-1)^k;
else return 8;
end if; return T;
end function;
[T(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 24 2021
(Sage)
@CachedFunction
def f(n, x): return (2-x)^n if (n<2) else 2*(2-x)*sum( ((n-1)/(2*n-j-2))*binomial(2*n-j-2, j)*(-x)^(n-j-1) for j in (0..n-1) )
def g(n, k): return factorial(n) if (k==0) else product( f(j, k+1) for j in (1..n-1) )
def T(n, k, m): return round( g(n, m)/(g(k, m)*g(n-k, m)) )
flatten([[T(n, k, 3) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Jun 23 2021
CROSSREFS
Cf. A129862, A007318 (m=0), A156608 (m=2), this sequence (m=3), A156610 (m=4), A156612.
Sequence in context: A350021 A176388 A282494 * A026637 A026659 A026386
KEYWORD
sign,tabl
AUTHOR
Roger L. Bagula, Feb 11 2009
EXTENSIONS
Definition corrected and edited by G. C. Greubel, Jun 23 2021
STATUS
approved