login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A282494
Number of ways to write n as x^4 + y^2 + z^2 + w^2 with y*(y+240*z) a positive square, where x,y,z,w are nonnegative integers.
6
1, 2, 1, 1, 4, 4, 1, 1, 3, 5, 4, 1, 3, 6, 3, 1, 6, 7, 3, 5, 9, 5, 1, 2, 6, 11, 7, 1, 7, 9, 2, 2, 6, 5, 5, 7, 7, 4, 1, 4, 10, 11, 3, 1, 9, 8, 2, 1, 5, 10, 8, 7, 10, 10, 4, 6, 8, 5, 4, 3, 9, 11, 4, 1, 11, 12, 4, 7, 13, 10, 2, 5, 5, 7, 7, 3, 10, 9, 1, 4
OFFSET
1,2
COMMENTS
Conjecture: a(n) > 0 for all n > 0.
By the linked JNT paper, any nonnegative integer can be expressed as the sum of a fourth power and three squares, and each n = 0,1,2,... can be written as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers and z*(y-2*z) = 0. Whether z = 0 or y = 2*z, the number y*(y+240*z) is definitely a square.
See also A282463 and A282495 for similar conjectures.
LINKS
Zhi-Wei Sun, Refining Lagrange's four-square theorem, J. Number Theory 175(2017), 167-190.
Zhi-Wei Sun, Restricted sums of four squares, arXiv:1701.05868 [math.NT], 2017.
EXAMPLE
a(3) = 1 since 3 = 1^4 + 1^2 + 0^2 + 1^2 with 1*(1+240*0) = 1^2.
a(4) = 1 since 4 = 0^4 + 2^2 + 0^2 + 0^2 with 2*(2+240*0) = 2^2.
a(39) = 1 since 39 = 1^4 + 2^2 + 3^2 + 5^2 with 2*(2+240*3) = 38^2.
a(188) = 1 since 188 = 3^4 + 5^2 + 1^2 + 9^2 with 5*(5+240*1) = 35^2.
a(399) = 1 since 399 = 3^4 + 10^2 + 7^2 + 13^2 with 10*(10+240*7) = 130^2.
a(428) = 1 since 428 = 0^4 + 10^2 + 2^2 + 18^2 with 10*(10+240*2) = 70^2.
a(439) = 1 since 439 = 1^4 + 10^2 + 7^2 + 17^2 with 10*(10+240*7) = 130^2.
a(508) = 1 since 508 = 1^4 + 5^2 + 11^2 + 19^2 with 5*(5+240*11) = 115^2.
a(748) = 1 since 748 = 3^4 + 1^2 + 21^2 + 15^2 with 1*(1+240*21) = 71^2.
a(1468) = 1 since 1468 = 2^4 + 10^2 + 26^2 + 26^2 with 10*(10+240*26) = 250^2.
a(2828) = 1 since 2828 = 3^4 + 5^2 + 11^2 + 51^2 with 5*(5+240*11) = 115^2.
MATHEMATICA
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
Do[r=0; Do[If[SQ[n-x^4-y^2-z^2]&&SQ[y*(y+240*z)], r=r+1], {x, 0, (n-1)^(1/4)}, {y, 1, Sqrt[n-x^4]}, {z, 0, Sqrt[n-x^4-y^2]}]; Print[n, " ", r]; Continue, {n, 1, 80}]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Feb 16 2017
STATUS
approved