login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A282496
'Somos expansion' of Pi: Pi=a(0)*sqrt(a(1)*sqrt(a(2)*sqrt(a(3)*sqrt(...)))). a(n)=floor(x(n)), x(n)=x(n-1)^2/a(n-1)^2, x(0)=Pi.
1
3, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 3, 1, 2, 1, 3, 1, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 3, 1, 2, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 3, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 2, 2, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1
OFFSET
0,1
COMMENTS
1<=a(n)<=3 for all n. Reasoning: for x>1 it follows that 1<x/floor(x)<2.
LINKS
FORMULA
Product_{k>=0} a(k)^(1/2^k) = Pi.
EXAMPLE
Integer part of Pi is 3. Integer part of Pi^2/9 is 1.
MATHEMATICA
$MaxExtraPrecision = 1000;
x00 = Pi;
x0 = x00;
Nm = 130;
j = 1;
Res = Table[1, {j, 1, Nm}];
While[j < Nm, Res[[j]] = Floor[x0]; x0 = N[(x0/ Res[[j]])^2, 20000];
j++];
Res
CROSSREFS
Cf. A000796 (digits), A100044 (Pi^2/9), A001203 (continued fraction), A276459 (another nested radical expansion).
Sequence in context: A344759 A337820 A322127 * A253238 A249773 A030369
KEYWORD
nonn
AUTHOR
Yuriy Sibirmovsky, Feb 16 2017
STATUS
approved