OFFSET
0,1
COMMENTS
1<=a(n)<=3 for all n. Reasoning: for x>1 it follows that 1<x/floor(x)<2.
LINKS
Yuriy Sibirmovsky, Table of n, a(n) for n = 0..1999
FORMULA
Product_{k>=0} a(k)^(1/2^k) = Pi.
EXAMPLE
Integer part of Pi is 3. Integer part of Pi^2/9 is 1.
MATHEMATICA
$MaxExtraPrecision = 1000;
x00 = Pi;
x0 = x00;
Nm = 130;
j = 1;
Res = Table[1, {j, 1, Nm}];
While[j < Nm, Res[[j]] = Floor[x0]; x0 = N[(x0/ Res[[j]])^2, 20000];
j++];
Res
CROSSREFS
KEYWORD
nonn
AUTHOR
Yuriy Sibirmovsky, Feb 16 2017
STATUS
approved