login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

'Somos expansion' of Pi: Pi=a(0)*sqrt(a(1)*sqrt(a(2)*sqrt(a(3)*sqrt(...)))). a(n)=floor(x(n)), x(n)=x(n-1)^2/a(n-1)^2, x(0)=Pi.
1

%I #10 Feb 19 2017 14:04:48

%S 3,1,1,1,2,1,1,1,2,1,1,1,1,2,1,1,1,1,2,1,2,2,1,1,2,1,1,1,1,3,1,2,1,3,

%T 1,1,2,2,1,1,2,1,1,2,1,2,1,1,1,1,1,1,1,3,1,2,1,1,3,1,2,1,1,1,1,3,1,2,

%U 1,1,1,2,1,3,1,1,1,1,1,1,1,1,3,1,1,2,1,3,1,1,1,1,1,3,1,1,2,1,1,3,1,1,3,1,2,1,1,1,1,1,2,1,1,1,1,3,1,2,2,1,1,1,1,2,1,3,1,1,1,1

%N 'Somos expansion' of Pi: Pi=a(0)*sqrt(a(1)*sqrt(a(2)*sqrt(a(3)*sqrt(...)))). a(n)=floor(x(n)), x(n)=x(n-1)^2/a(n-1)^2, x(0)=Pi.

%C 1<=a(n)<=3 for all n. Reasoning: for x>1 it follows that 1<x/floor(x)<2.

%H Yuriy Sibirmovsky, <a href="/A282496/b282496.txt">Table of n, a(n) for n = 0..1999</a>

%F Product_{k>=0} a(k)^(1/2^k) = Pi.

%e Integer part of Pi is 3. Integer part of Pi^2/9 is 1.

%t $MaxExtraPrecision = 1000;

%t x00 = Pi;

%t x0 = x00;

%t Nm = 130;

%t j = 1;

%t Res = Table[1, {j, 1, Nm}];

%t While[j < Nm, Res[[j]] = Floor[x0]; x0 = N[(x0/ Res[[j]])^2, 20000];

%t j++];

%t Res

%Y Cf. A000796 (digits), A100044 (Pi^2/9), A001203 (continued fraction), A276459 (another nested radical expansion).

%K nonn

%O 0,1

%A _Yuriy Sibirmovsky_, Feb 16 2017