|
|
A001203
|
|
Simple continued fraction expansion of Pi.
(Formerly M2646 N1054)
|
|
53
|
|
|
3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2, 1, 84, 2, 1, 1, 15, 3, 13, 1, 4, 2, 6, 6, 99, 1, 2, 2, 6, 3, 5, 1, 1, 6, 8, 1, 7, 1, 2, 3, 7, 1, 2, 1, 1, 12, 1, 1, 1, 3, 1, 1, 8, 1, 1, 2, 1, 6, 1, 1, 5, 2, 2, 3, 1, 2, 4, 4, 16, 1, 161, 45, 1, 22, 1, 2, 2, 1, 4, 1, 2, 24, 1, 2, 1, 3, 1, 2, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
The first 30113021586 terms were computed by Syed Fahad on Apr 27 2021.
|
|
REFERENCES
|
P. Beckmann, "A History of Pi".
C. Brezinski, History of Continued Fractions and Padé Approximants, Springer-Verlag, 1991; pp. 151-152.
J. R. Goldman, The Queen of Mathematics, 1998, p. 50.
R. S. Lehman, A Study of Regular Continued Fractions. Report 1066, Ballistic Research Laboratories, Aberdeen Proving Ground, Maryland, Feb 1959.
G. Lochs, Die ersten 968 Kettenbruchnenner von Pi. Monatsh. Math. 67 1963 311-316.
C. D. Olds, Continued Fractions, Random House, NY, 1963; front cover of paperback edition.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
Bill Gosper and Julian Ziegler Hunts, Animation
Ed Pegg, Jr., Sequence Pictures, Math Games column, Dec 08 2003 [Cached copy, with permission (pdf only)]
Eric Weisstein's World of Mathematics, Pi
|
|
EXAMPLE
|
Pi = 3.1415926535897932384...
= 3 + 1/(7 + 1/(15 + 1/(1 + 1/(292 + ...))))
= [a_0; a_1, a_2, a_3, ...] = [3; 7, 15, 1, 292, ...].
|
|
MAPLE
|
|
|
MATHEMATICA
|
ContinuedFraction[Pi, 98]
|
|
PROG
|
(PARI) contfrac(Pi) \\ contfracpnqn(%) is also useful!
(PARI) { allocatemem(932245000); default(realprecision, 21000); x=contfrac(Pi); for (n=1, 20000, write("b001203.txt", n, " ", x[n])); } \\ Harry J. Smith, Apr 14 2009
(Sage) continued_fraction(RealField(333)(pi)) # Peter Luschny, Feb 16 2015
(Python)
import itertools as it; import sympy as sp
list(it.islice(sp.continued_fraction_iterator(sp.pi), 100))
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,nice,cofr
|
|
AUTHOR
|
|
|
EXTENSIONS
|
Word "Simple" added to the title by David Covert, Dec 06 2016
|
|
STATUS
|
approved
|
|
|
|